Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные частицы скорость седиментации

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным уменьшением концентрации частиц в направлении от нижних слоев к верхним. Распределение частиц в зависимости от высоты столба жидкости подчиняется гипсометрическому (или барометрическому) закону Лапласа в применении к золям при [c.307]


    V.9.I. Рассчитать средний сдвиг X сферических частиц песка в воде (т. е. смещение за 1 с за счет теплового движения) и скорость седиментации прн следующих условиях температура 7 = 293 К, вязкость дисперсионной среды -п=1-10 з Па-с плотность песка р = 210 кг/м , плотность дисперсионной среды p = Ы 0 кг/м . Сравнить седиментационную устойчивость дисперсных систем с размерами частиц 10 м (грубодисперсная система) и 10 м (коллоидная система). [c.123]

    Отличительная особенность броуновского движения частиц в газообразной дисперсионной среде определяется, прежде всего, малой вязкостью и плотностью газов. В связи с этим жидкие и твердые частицы аэрозолей имеют болыиие скорости седиментации под влиянием силы тяжести, что затрудняет наблюдение броуновского движения. Одиако действие силы тяжести частиц удобно скомпенсировать с помощью электрического поля. Другая особенность броуновского движения частиц в газах связана с тем, что число молекул в единице объема газа значительно меньше, чем в жидкости, и число столкновений молекул газа с коллоидной частицей также меньи.[е, а это обусловливает существенно большие амплитуды броуновского двпжения. Средний сдвиг частицы, находящейся в воздухе при нормальных условиях, в 8 раз больше, а в водороде в 15 раз больше, чем в воде. При уменьшении давления газа средний сдвиг частицы можно увеличить в сотни раз. Из сказанного следует, что, изменяя давление, можно менять характер броуновского движения, т. е. управлять им. Поэтому аэрозоли являются хорошими объектами для исследования броуновского движения. [c.207]

    Для проведения седиментометрического анализа кинетически устойчивых систем (золей, растворов ВМВ) с целью определения размеров и массы их частиц недостаточно силы земного тяготения. Последнюю заменяют более значительной центробежной силой центрифуг и ультрацентрифуг. Идея этого метода принадлежит А. В. Думанскому (1912), который впервые применил центрифугу для осаждения коллоидных частиц. Затем Т. Сведберг разработал специальные центрифуги с огромным числом оборотов, названные ультрацентрифугами. В них развивается центробежная сила свыше 250 ООО Современная ультрацентрифуга представляет собой сложный аппарат, центральной частью которого является ротор (с частотой вращения 60 000 об/мин и выше), с тончайшей регулировкой температуры и оптической системой контроля за процессом осаждения. Кюветы для исследуемых растворов вмещают всего 0,5 мл раствора. В ультрацентрифуге оседают не только частицы тонкодисперсных золей, но и макромолекулы белков и других ВМВ, что позволяет производить определение их молекулярной массы и размеров частиц. Скорость седиментации частиц в ультрацентрифуге рассчитывают также по уравнению (23.9), заменяя в нем g на о) х, где (О — угловая скорость вращения ротора л — расстояние от частицы до оси вращения. [c.378]


    Под действием силы тяжести все коллоидные частицы независимо от их природы оседают в растворе этот процесс называется седиментацией. Скорость оседания частиц зависит от размеров частиц, от разности плотностей частиц 1 и среды р и от вязкости жидкости т). Для шарообразных частиц с радиусом г сила трения при их падении в жидкости равна 6 пг ги (где и — скорость оседания), а эффективный вес частиц, под действием которого происходит оседание, равен [c.36]

    Для определения степени дисперсности высокодисперсных систем, содержащих коллоидные частицы, метод седиментации, основанный на измерении скорости оседания под действием силы тяжести, неприменим в виду кинетической устойчивости коллоидных систем. [c.186]

    Итак, исследование молекулярно-кинетических и оптических свойств позволяет определять одну из важнейших характеристик дисперсных систем — размеры частиц дисперсной фазы, или степень дисперсности системы. Размеры коллоидных частиц можно найти, определив коэффициент диффузии для данной коллоидной системы. Размеры их можно установить также ультрамикроскопическими и нефелометрическими наблюдениями или с помощью электронного микроскопа. Измеряя скорость седиментации частиц в грубодисперсных системах, также можно определить и степень их дисперсности. [c.47]

    Размер коллоидных частиц, как уже указывалось, можно найти не только по скорости седиментации в ультрацентрифуге, но и определяя седиментационное равновесие. Для этой цели применяют центрифугирование при не слишком больших частотах вращения (обычно около 20 000 об/мин), так как иначе превалировала бы седиментация и равновесие не устанавливалось. Численный или молекулярный вес, найденный по седиментационному равновесию, отвечает равновесному распределению частиц в системе, он не зависит от способа достижения этого распределения, и, следовательно, на результатах анализа не может сказываться форма частиц и их сольватация. [c.80]

    Если агрегативная устойчивость коллоидных систем отвечает их способности сохранять постоянными размеры частиц, то седиментационная устойчивость характеризует противодействие осаждению в поле тяготения. Коллоидные частицы участвуют в тепловом (броуновском) движении, что обусловливает их равномерное распределение в достаточно узком слое жидкости.. Способность частиц удерживаться во взвешенном состоянии зависит от их размеров, массы, вязкости раствора, различия плотностей дисперсной фазы и дисперсионной среды. Повышение температуры увеличивает скорость броуновского движения частиц, однако при слишком высоких температурах сталкивающиеся частицы разрушают свои защитные оболочки из ионов и молекул растворителя, частицы слипаются, и начинается их седиментация. [c.152]

    Как и при определении численного веса коллоидных систем, для определения молекулярного веса полимеров применяются два метода по скорости седиментации и по седиментационному равновесию. Второй метод обладает тем преимуществом, что полученные с его помощью результаты не зависят от формы частиц недостатком же его является длительность установления седиментационного равновесия. , [c.457]

    Броуновское движение коллоидных частиц оказывает непосредственное влияние на седиментацию, т. е. осаждение коллоидных растворов. Уравнение (4) для скорости падения шарика в среде с вязкостью т] [c.31]

    Классические косвенные методы определения размера частиц основаны на изучении адсорбции, скоростей растворения и седиментации, седиментационного равновесия, осмотического давления, рассеяния света, рассеяния рентгеновских лучей под малыми углами, ультрацентрифугирования и явлений электрофореза [1]. Однако эти методы, как правило, дают возможность определить средний размер коллоидных частиц и нри попытках представить полученные данные в виде кривой распределения частиц по размерам возникают существенные затруднения. Заключения о форме частиц могут быть выведены на основании исследования рассеяния света и двойного лучепреломления в потоке, но и здесь установление распределения связано с математическими трудностями. [c.130]

    Ультра центрифуги [278—282] вследствие возникающих при их эксплуатации значительных экспериментальных трудностей применяют главным образом для измерительных целей. Измеряя равновесие седиментации, а также скорость седиментации, можно определять величину частиц коллоидных растворов или (в отдельных случаях) молекулярный вес вплоть до 40. Ротор, изготовленный из стали или алюминия, в который вмонтирована измерительная ячейка, вращается в большинстве случаев в атмосфере водорода под незначительным давлением. При небольшом числе оборотов (до 18 ООО) вращение осуществляется непосредственно электромотором [283], при большем числе оборотов — при помощи масляной турбины или воздушного волчка (до 200 ООО соответственно 10 ) подвешивание оси в настоящее время достигается исключительно при помощи магнитов [284, 285]. [c.229]

    Коллоидные частицы имеют весьма малые размеры и поэтому участвуют в броуновском движении, в то же время они обладают заметной скоростью диффузии (10 —10 см /с), что способствует выравниванию концентрации частиц по объему. Коллоидные системы обладают избытком свободной энергии за счет чрезвычайно развитой удельной поверхности частиц. Термодинамически такая система должна самопроизвольно стремиться к состоянию, в котором ее свободная энергия была бы минимальна, т. е. к самопроизвольному умень-. шению поверхности, а следовательно, и к укрупнению частиц. Однако на практике коллоидные системы обладают весьма высокой агрегативной устойчивостью. Такая устойчивость при малых размерах частиц способствует седиментационной устойчивости (постоянству концентрации примесей по всему объему воды), так как гравитационная сила, вызывающая седиментацию, нивелируется силами диффузии. Агрегативная устойчивость коллоидной системы объясняется существованием двойного электрического слоя ионов и скачка потенциала на границе раздела фаз. [c.30]


    Скорость осаждения (седиментации) частиц в жидкостях зависит также от разности плотностей частиц и жидкости. Если последняя мала, как, например, у взвеси кристаллов твердого парафина в минеральных маслах, то осаждение происходит очень медленно. В тех случаях, когда плотность коллоидных частиц меньше плотности жидкости, будет иметь место всплывание частиц, а не их осаждение, как, например, у взвеси шариков жира в молоке. Вязкость жидкости препятствует падению или подъему частиц, и чем она выше, тем при прочих равных условиях более устойчивы коллоидные растворы и суспензии. [c.152]

    Многочисленные исследования показали, что наиболее надежным методом наблюдения процесса коагуляции во времени является метод подсчета числа частиц за определенный промежуток времени в ультрамикроскопе. Согласно теории коагуляции золей, предложенной М. Смолуховским (1906), началом коагуляции считают соприкосновение двух коллоидных частиц и слипание их в один агрегат. Эти удвоенные частицы, совершая броуновское движение и встречаясь е другими такими же или одиночными частицами, способны образовать тройные, четверные и т. д. частицы — вплоть до начала седиментации. В своей теории М. Смолуховский скорость коагуляции уподобляет скорости обычных химических реакций второго порядка и на основании этого выводит соответствующее уравнение. Отличие с точки зрения кинетики заключается в том, что в случае обычной химической реакции прореагировавшие молекулы в дальнейшем не участвуют в реакции, а коллоидные частицы, слипаясь при столкновении, продолжают участвовать в процессе коагуляции, образуя все более сложные комплексы. [c.464]

    Скорость седиментации суспензий под влиянием силы тяжести уже давно использовалась рядом исследователей для установления размеров частиц суспензий. Формула "Стокса, связывающая скорость падения сферической частицы с ее радиусом, давала возможность приблизительно определить размеры частицы. В 1923 г. Сведберг и Никольс применили центрифугу для увеличения действующей силы и для ускорения седиментации с целью измерения размеров частиц . Дальнейшее развитие техники ультрацентрифуги привело к тому, что в настоящее время этот прибор является наиболее мощным орудием физического исследования белков и других коллоидных молекул. [c.333]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]

    Седиментация в центробежном поле. Скорость осаждения частиц можно повысить, если заменить седиментацию в поле силы тяжести центрифугированием. Таким путем удается определить размеры коллоидных частиц и добиться оседания макромолекул. Если скорость движения частиц в радиальном направлении мала, что практически всегда достигается выбором угловой скорости центрифуги в зависимости от размеров частиц, то выполняется равенство [c.44]

    Под действием силы тяжести все коллоидные частицы оседают в растворе. Этот процесс называется седиментацией. Для шарообразных частиц по закону Стокса скорость оседания определяют [c.154]

    Свободное оседание агрегатов коллоидных частиц под действием силы тяжести называют седиментацией. Ее скорость зависит от размеров и удельного веса частиц, от их заряда, вязкости раствора и т. д. Частицы, находящиеся в изоэлектрическом состоянии, оседают быстрее, так как заряд не препятствует их [c.203]

    Седиментация представляет собой перемещение более плотных частиц дисперсной фазы или молекул растворенных высорюмолеку-лярных Беществ относительно менее плотной дисперсионной среды в направлении приложенной силы. Этому перемещению противостоит броуновское движение, а также любые воздействия на систему, приводящие к возникновению конвекционных токов — встряхивание, локальные изменения температуры и т. п. В поле земного тяготения с заметной скоростью осаждаются (седиментируют) лишь частицы не слишком мелких суспензий. Это осаждение может быть существенно ускорено применением центрифуг. При этом, как правило, возникают столь плотные осадки, что надосадочную жидкость (супернатант) можно просто слить с осадка опрокидыванием пробирки. Поэтому центрифугирование широко используют в лабораторной практике и в промышленных установках вместо фильтрования, особенно в тех случаях, когда осажденное вещество образует мелкодисперсную суспензию. В ультрацентрифугах удается осадить коллоидные частицы и молекулы полимеров. [c.333]

    Седиментация, ультрацентрифугирование. Метод определения скорости седиментации частиц в процессе центрифугирования применяют в основном для оценки молекулярных весов коллоидных веществ и полимеров 4яУУь з/2 [c.385]

    Под влиянием силы тяжести все коллоидные частицы, цезависи-мо от их природы, оседают в растворе, от процесс называется седиментацией. Скорость оседания частиц зависит от размеров частиц, от разности плотностей частиц и среды и от вязкости жидкости. Так, например, частицы серебра при диаметре 200 х падают в вйде на 1 см за 0,05 сек, при диаметре 2 [г —за 500 сек, а при диаметре 20 т 1 — лишь за 58 дней. [c.312]

    Седиментационный метод с применением ультрацентри-фуги описан ранее (стр. 28—29) при рассмотрении методов определения размера коллоидных частиц. Определение молекулярного веса этим методом сводится а) либо к исследованию распределения концентрации раствора после установления седиментационного равновесия, для чего скорость вращения центрифуги устанавливают такую, чтобы развиваемая ею центробежная сила превышала силу тяжести примерно в 10 —10 раз б) либо к исследованию скорости седиментации, для чего центробежная сила должна превышать силу тяжести в 10 —10 раз. Изменение концентрации в установившемся равновесии определяют фотографически или по изменению показателя преломления. Расчет М производят по особым уравнениям, на которых мы не останавливаемся. Заметим лишь, что этот метод является наиболее всесторонним, так как, помимо УИ, дает возможность определять также и степень полидисперсности исследуемого вещества и судить о форме макромолекул. Метод нашел широкое применение при исследовании белков, полистирола, целлюлозы и других веществ. [c.163]

    Различают седиментационную устойчивость и устойчивость к коагуляции (агрегативную устойчивость). Седимен-тационно устойчивы коллоидные системы с газовой и жидкой дисперсионной средой, в к-рых броуновское движение частиц препятствует оседанию грубодисперсные системы с одинаковой плотностью составляющих их фаз системы, скоростью седиментации в к-рых можно пренебречь из-за высокой вязкости среды. [c.81]

    Под действием силы тяжести все коллоидные частицы, независимо от их природы, оседают в растворе этот процесс называется седиментацией. Скорость оседания частиц зависит от размеров частиц, от разности плотностей частиц с1 и среды о и от вязкости жидкости Т . Для шарооб- [c.39]

    Из уравнения (II. 9) видно, что скорость оседания особенно сильно зависит от размера частиц. Так, например, частицы серебра при диаметре 200 р. оседают в воде на 1 см за 0,05 сек., при диаметре 2[а — за 500сек., а при диаметре 20м л — лишь за 58 дней. Если частицы легче жидкости (например, в эмульсии масла, в воде), то (й —р) имеет обратный знак, и вместо оседания наблюдается всплывание частиц, согласно тому же закону. При отсутствии противодействующих сил седиментация коллоидных частиц за достаточно продолжительный промежуток времени неизменно приводила бы к осаждению всего коллоида на дне сосуда. Этого, однако, обычно не происходит ввиду того, что оседанию частиц (даже при полном покое раствора, при постоянстве температуры, отсутствии конвекционных потоков и др.) всегда противодействует броуновское движение, стремящееся равйомерно распределить коллоидные частицы по всему объему раствора. Чем меньше частицы, тем сильнее сказывается влияние броуновского движения или диффузии (табл. 4). [c.40]

    Для простоты дисперсность обычно выражают эффективными величинами — эквивалентным и седиментацион-ным радиусами. Эквивалентный радиус — радиус сферы, объем которой равен объему коллоидной частицы седиментационный радиус г, — радпус сферы с той же плотностью и скоростью седиментации, что и коллоидная частица. При определении размеров частиц по скорости их седиментации, очевидно, легче всего найти г , а при определении размеров частиц путем взвешивания и счета получаем непосредственно г . Для сферических частиц г =г =г. Примерно то же справедливо и для частиц правильной полиэдрической формы. Для анизодиаметричных частиц эквивалентный и седиментационный радиусы могут существенно раз.тичаться. Мерой отклонения формы частиц от сферической служит величина так называемого коэффициента сферичности к, — отношение поверхности сферы с объемом, равным объему данной частицы, к истинной поверхности частицы. Для сферических частиц з<з = 1. Для частиц любой другой формы х, < 1. Для частиц полиэдрической формы X, близко к единице так, для октаэдра х =0,846, для куба х,=0,806, для тетраэдра х =0,б70. Для других форм может иметь очень низкое значение. [c.262]

    Процесс оседания частиц под действием силы тяжести носит название седиментации. Скорость его находится в прямой зависимости от размеров частиц более крупные частицы оседают быстрее, чем мелкие. Диффузия же протекает с большей скоростью в случае более мелких частиц и замедляется с увеличением размера частиц. Если степень дисперсности мала (диаметр частиц больше 4 т ), то такие частицы не совершают броуновского движения и их способность к диффузии равна нулю. Здесь сила тяжести резко преобладает над силами диффузии. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, стремится к выравниванию концентраций во всем объеме дисперсной системы. Однако в достаточно толстых слоях полного выравнивания не достигается. Здесь в результате взаимодействия между силой тяжести и силой диффузии устанавливается некоторое состояние равновесия, характеризующееся постепенным уменьшением концентрации в направлении от нижних слоев к верхним. Это седиментационное равновесие оно характеризуется равенством скоростей седиментации и диффузии, когда через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком (в силу различной концентрации). Это явление наблюдается не только в коллоидных растворах, но и в молекулярнодисперсных системах. [c.352]

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным умеиь- [c.391]


Смотреть страницы где упоминается термин Коллоидные частицы скорость седиментации: [c.614]    [c.374]    [c.197]    [c.69]    [c.519]    [c.248]    [c.196]    [c.519]    [c.519]    [c.355]    [c.180]    [c.328]   
Курс коллоидной химии (1976) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные частицы

Седиментация

Седиментация седиментации

Седиментация частиц

Седиментация частиц скорость



© 2025 chem21.info Реклама на сайте