Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия и метаболизм в живых системах

    Человек живет на Земле не один, а в окружении множества других живых существ, и их метаболизм для нас жизненно важен. Фотосинтезирующие организмы используют энергию солнечного света и вырабатывают вещества, которые необходимы для человека, но не синтезируются в его организме. Микроорганизмы, получая энергию за счет различных реакций, разлагают сложные органические соединения до форм, которые могут затем использоваться растениями. В этой книге мы опишем химические реакции, протекающие в самых разнообразных живых системах. Наряду с метаболическими путями, общими для большинства организмов, будут рассмотрены и некоторые своеобразные, необычные процессы. [c.11]


    Живой организм — система принципиально открытая. Жизнь существует благодаря метаболизму — обмену веществ с окружающей средой. Живое существо дышит и питается, выделяет ряд веществ, получает н отдает тепловую энергию. [c.58]

    Энергия и метаболизм в живых системах гликолиз, цикл лимонной кислоты и дыхательная цепь. Фотосинтез. [c.264]

    Среди множества природных соединений существует обширный класс изопреноидов (или терпеноидов), включающий тысячи структурно различных соединений, которые объединены единством пути биосинтеза из небольшого числа ключевых предшественников. Роль некоторых соединений этого класса, таких, как витамины А и D или стероидные гормоны, уже давно известна они выполняют важнейшие регуляторные функции в организмах млекопитающих. Также понятна практическая полезность ряда других издавна известных изопреноидов, как, например, камфоры, ментола или каучука. Однако долгое время ничего конкретного не было известно ни о функциях, ни о полезных свойствах еще сотен природных соединений этого класса. В результате к 50-м годам XX в. сложилось мнение, что большинство изопреноидов, например растительного происхождения, образуются в живой клетке как физиологически инертный балласт для связывания отходов метаболизма (вторичные метаболиты). При этом как-то даже не ставился такой вопрос а почему все-таки организму потребовалось ценой значительных затрат энергии синтезировать те или иные, иногда очень сложные структуры, если их единственное назначение — обеспечивать функционирование системы удаления шлаков В те времена могло показаться, что лишь профессиональный педантизм и отсутствие воображения заставляют химиков вести нескончаемую работу по поиску и вьщелению, изучению строения, а также еще и синтезу все новых и новых природных изопреноидов. Типичная инвентаризация неликвидов, числящихся на балансе природы — вот мнение, которое авторам доводилось слышать от некоторых ученых-функционеров, от которых, к сожалению, зависело распределение средств на научные исследования. [c.19]

    В биологии существование термодинамического сопряжения необходимо для обеспечения возможности использования живыми организмами энергии, выделяемой в реакциях клеточного метаболизма. Необратимые химические процессы в клетке являются причиной деградации энергии Гиббса системы в теплоту и приводят к диссипации (рассеянию) энергии. Однако наличие сопряжения таких химических процессов с реакциями ассими-дяции пищевых веществ в клетке частично предотвращает эти потери энергии и тем самым обеспечивает возможность развития или жизнедеятельности клетки и запасания энергии, выделенной в ходе самопроизвольных метаболических реакций, в форме химических связей И клеточных структур живого организма. При этом скорость общего изменения энтропии для сопряжен- [c.302]


    Кальциевый обмен самым тесным образом связан с метаболизмом фосфора в организме. В свою очередь фосфор, принимая участие в ряде метаболических процессов, фактически связан со всеми системами преобразования энергии в живой клетке. Фосфор попадает внутрь клетки в виде неорганического фосфата, оказавшись в клетке, он включается в различные органические соединения и в полифосфаты. Полифосфаты служат резервом и основным хранилищем фосфора в клетках, в которых протекает синтез нуклеиновых кислот и фосфолипидов, играя роль своеобразного метаболического буфера [960]. [c.496]

    Перейдем теперь от этих макроскопических аспектов метаболизма к метаболическим событиям, совершающимся в живых клетках на микроскопическом уровне, не упуская при этом, однако, из виду, что каждый тип клеток характеризуется особыми, ему одному свойственными потребностями в тех или иных источниках углерода, кислорода и азота, а также в соответствующих источниках энергии. Клеточный метаболизм-это система ферментативных превращений как веществ, так и энергии, начинающихся от исходных продуктов и завершающихся биосинтезом живой материи. [c.378]

    Живые системы являются открытыми системами. Открытой системой называют систему, обменивающуюся с окружающей средой веществом и энергией. Процессы обмена веществ (метаболизм) должны всегда находиться в центре внимания наук, связанных с изучением живых систем. [c.15]

    Обмен веществ, или метаболизм,—это закономерный порядок превращения веществ и энергии в живых системах. Обмен веществ, происходящий в организме, и организма с ок-ружаюн ей внешней средой—совокупность всех химических реакций, направленных на самоорганизацию и самовоспроизведение это важнейшее свойство жизни и непременный ее приз-как. [c.353]

    Для нормального функционирования животных и растительных клеток помимо обмена веществ и энергии необходима интеграция функций, осуществляемая, в частности, гормонами — веществами, способными контролировать различные стороны клеточного метаболизма. Термин гормон (от греч. — возбуждать) был впервые предложен Э. Старлингом в 1905 г. применительно к секретину, образующемуся в клетках двенадцатиперстной кишки и воздействующему на функции поджелудочной железы. В настоящее время открыто несколько десятков различных гормонов животного и растительного происхождения. Наука, изучающая действие гормонов на живые системы, называется эндокринологией. Это один из наиболее интересных разделов биохимии, так как, с одной стороны, он связан с регуляцией и интеграцией метаболизма, а с другой — изучает молекулярные механизмы различных эндокринных заболеваний. В последние годы широкое развитие получила токсоэндокринология в связи с выявлением действия токсикантов не только на эндокринную, но и на репродуктивную систему организма, что приводит к образованию рака молочной железы и половых желез, а также различных генетических нарушений у потомства. [c.132]

    Сравнение множества клеток самых разных типов показывает, что набор содержащихся в них ферментов во многом сходен. По-видимому, во всех живых организмах протекают в основном одни и те же метаболические процессы некоторые различия, касающиеся конечных продуктов обмена, отражают скорее наличие или отсутствие того или иного фермента, нежели изменение общего характера метаболизма. Сложные системы углеводного обмена, состоящие из ферментов, коферментов и переносчиков, образуют главный поставляющий энергию механизм у животных, растений, плесневых грибов, дрожжей и у 1большинства других микроорганизмов. [c.96]

    Одна из особенностей живых организмов состоит в том, что все они представляют собой открытые системы, которые способны извлекать, преобразовывать и использовать энергию окружающей среды либо в форме органических питательных веществ (хемотрофы), либо в форме энергии солнечного излучения (фототрофы). Обмен энергией в организме тесно связан с обменом веществ (метаболизмом). Метаболизм можно определить как совокупность ферментативных химических реакций, которые могут протекать в клетке. Активность ферментов, катализирующих эти реакции, регулируется с помощью чувствительной системы взаимосвязанных механизмов, поэтому метаболизм представляет собой высококоординированную, целенаправленную клеточную активность. Он выполняет следующие функции  [c.189]

    Первый здкон термодинамики применим и к биологическим системам, например к живым организмам, в которых протекают биохимические, физиологические и другие процессы, сопровождающиеся превращением энергии. Изучение обмена веществ, в частности ассимиляции и диссимиляции, измерения всего выделяемого человеком тепла, поглощенного им кислорода, выдыхаемых двуокиси углерода и азота, выделяемой мочи и др., вычисление полного баланса метаболизма белков, жиров и углеводов позволило показать, что пищевые продукты при окислении в организме высвобождают такое же количество энергии, как при сжигании их до тех же конечных веществ вне организма. Энергетический баланс процессов подчиняется первому закону термодинамики. В процессе обмена веществ организм принимает из внешней среды разнообразные вещества. Они в организме подвергаются глубоким изменениям, в результате которых превращаются в вещества самого организма. Одновременно вещества живого организма разлагаются, выделяя энергию и продукты разложения во внешнюю среду. Специфично для живых тел то, что эти реакции определенным образом организованы во времени, согласованы между собой и образуют целостную систему, обусловливающую единство ассимиляции и диссимиляции и направленную на постоянное самовосстановление и самосохранение живого тела. [c.54]


    Живая клетка — это открытая система, постоянно обменивающаяся веществом и энергией с окрулсающей Средой. Оставаясь термодинамически открытой системой, клетка стремится сохранить неизменным свой внутренний состав. В многоклеточном организме происходит специализация функций. При этом клетка приобретает способность реагировать изменением функциональной активности и метаболизма не только на факторы окружающей среды, но и на изменения, происходящие в других клетках организма. [c.5]


Смотреть страницы где упоминается термин Энергия и метаболизм в живых системах: [c.323]    [c.325]    [c.128]    [c.19]    [c.126]   
Смотреть главы в:

Основные законы химии. Т.2 -> Энергия и метаболизм в живых системах




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте