Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возможные направления развития теории

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]


    Теория Лэнгмюра рассматривала случаи адсорбции и катализа в мономолекулярном слое на однородных поверхностях, не учитывая детально взаимодействия между адсорбированными частицами. Эта теория, благодаря простоте и наглядности, пользовалась в свое время признанием и явилась значительным этапом в развитии теории катализа. Однако для активных адсорбентов и катализаторов она является недостаточной, так как в кинетике гетерогенных процессов встречаются сильные отклонения от уравнения изотермы адсорбции Лэнгмюра, которые казались необъяснимыми. Из возможных путей правильного направления теории катализа особо плодотворной [c.151]

    Возможные направления развития теории 293 [c.293]

    Теоретические исследования распространения пламени, в частности исследования Хиршфельдера с сотрудниками. Кармана, Сполдинга и других, далее показали, что тепловая теория, как и конкурирующая с ней диффузионная теория распространения пламени, имеет ограниченную применимость, определяемую теми постулатами, которые положены в основу этих теорий. Эти исследования показали, что наиболее последовательное направление развития теории горения должно исходить из решения полной (или ограниченно полной) системы уравнений диффузии и теплопроводности, не ограниченной условием подобия полей температуры и концентраций или условием стационарности концентраций проме куточных веществ, хотя в отдельных конкретных случаях эти условия, приводящие к существенному упрощению расчетов, и могут быть успешно использованы. Необходимым условием правильного развития современной теории горения является также по возможности полный учет особенностей химического механизма реакции горения. [c.498]

    Большое внимание в ГЕОХИ АН СССР уделяется работам по развитию теории действия органических реагентов, что является предпосылкой для возможного осуществления направленных синтезов реагентов с заданными свойствами. Широкое применение современных физических методов исследования в сочетании с расчетными квантовохимическими позволило установить структуру реагентов и комплексов в их разных ионных формах и конформациях, представить молекулярные диаграммы соединений и развить теорию контрастности цветных реакций. Внесен серьезный вклад в теорию реакционной способности органических соединений. Установлено, что решающим фактором реакционной способности соединений, а следовательно, и избирательности является конфигурация и сила электрического поля в ближайшем (1—3 атомных размера) окружении органической молекулы. Это поле формируют в основном полярные заместители, входящие в состав молекулы [c.6]


    Каталитические реакции протекают лишь в термодинамически возможных направлениях и к разъяснению их надо подходить с чисто химической точки зрения. Каталитические реакции в органической химии являются подтверждением и дальнейшим развитием теории строения органических соединений Бутлерова. Теоретический катализ, т. е. учение о причинах превращения молекул на поверхностях, является, в свою очередь, развитием и дальнейшим углублением идей о деформациях молекул как основной причине каталитических превращений. [c.168]

    Достижения в развитии теории адсорбции органических соединений на электродах и успехи в разработке методов исследования и теории многостадийных процессов все шире применяются при подборе новых добавок для процессов электрокристаллизации, ингибиторов коррозии, при выяснении механизма электрохимических превращений органических веществ и создании новых процессов электросинтеза. В 1971 г. академик А. Н. Фрумкин охарактеризовал электросинтез органических соединений как однО из направлений, стоящих накануне нового подъема и подчеркнул, что на этом направлении дальнейшие успехи возможны только на основе всестороннего использования современных достижений теории . Развитие электрохимии органических соединений в последние годы полностью подтверждает эти слова. [c.304]

    Так как модельные иредставления вскрывают физические основы процессов и свойств жидкостей, то развитие таких представлений будет продолжаться, несмотря на успехи двух других направлений в теории жидкостей и на возможности, открываемые применением электронных вычислительных машин. [c.211]

    Развитие теории ориентированной электрокристаллизации Показана возможность изучения кинетики процесса электрохимической нуклеации с помощью термодинамического метода. Уравнение Фольмера (флюктуационная теория) для скорости стационарной нуклеации решено с учетом изменения формы зародыша с ростом перенапряжения (т1). Получена линейная зависимость К2 = f (т)) в определенных границах, индивидуальных для каждого кристаллографического направления грани осаждаемого металла. Для металлов с малыми токами обмена в уравнение введен кинетический фактор - коэффициент адсорбции (К ). Ка [c.24]

    Возникновение во второй половине XIX столетия глубоко материалистической и диалектической по своему существу теории химического строения А. М. Бутлерова подняло органическую химию на новую, высшую ступень. Эта теория не только объяснила весь накопленный до ее возникновения опытный материал, но и дала возможность предсказывать новые факты, новые соединения, а также сознательно выбирать пути синтеза этих соединений. Основные положения теории химического строения надолго определили направление развития органической химии и являются ее незыблемым фундаментом. [c.630]

    На основе теор. представлений 1-й пол. 19 в. удалось построить удовлетворит, классификацию орг. соединений. Однако ни одна из ранних теорий не была в состоянии об],яс нить широко распространенное среди углеродистых в-в явление, названное тогда же изомерией. Эту кардинальную задачу решила теория хим. строения, впервые сформулированная А. М. Бутлеровым в 1861. Ее осн. положения а) в орг. молекулах атомы соединяются между собой в определ. порядке согласно их валентности, что обусловливает хим. строение молекул б) хим. и физ. св-ва орг. соединений зависят как от природы и числа входящих в их состав атомов, так и от хим. строения молекул в) для каждой эмпирич. ф-лы можно вывести определ. число теоретически возможных структур (изомеров) г) каждое орг. соед. имеет одну хим. ф-лу, к-рая дает представление о си пах этого соед. д) в молекулах существует взаимное влияние агомов как связанных, так и иепосредственно друг с другом не связанных. Теория хим. строения сразу же стала действенным орудием исследования она дала возможность не только объяснять, но и предвидеть разл. случаи изомерии, предугадывать возможные направления р-ций, делать заключения об их механизмах, прогнозировать существование новых соед. н проводить их планомерный синтез. С этой теории начинается новый период в развитии X., характеризующийся тем, что из науки преим. аналитической она превращается в науку синтетическую. X. этого периода обычно наз. классической. [c.652]

    Давид Альбертович в составе большого коллектива принял участие в работе по проблеме окисления и фиксации атмосферного азота при горении и взрывах. Упоминания об этой проблеме, например у Кавендиша, появились сразу после открытия азота и вслед за тем, как был установлен состав воздуха. К исследованию этого процесса обращались такие крупные химики, как Ф. Габер, В. Нернст (Германия), Р. Бон (Англия). В связи с развитием теории цепных реакций вставал вопрос о возможности прямого использования энергии горения для превращения азота в окись азота. Исследования, проведенные при участии Давида Альбертовича, показали, что процесс связан с механизмом цепной реакции при участии атомов N и О, однако при этом выход окислов азота ограничен условиями термодинамического равновесия. Вполне естественно наметились направления последующей работы Давида Альбертовича с одной стороны — теория горения и взрыва, с другой — общие основы химической технологии. К этим вопросам Давид Альбертович был близок и по своему инженерному образованию и опыту. [c.496]


    Основные направления развития аммиачно-содового производства. Изучение теории и практики аммиачно-содового процесса выявило ряд возможностей интенсификации производственных процессов, снижения расходных коэффициентов, повышения коэффициентов использования сырья, применения отходов производства. [c.311]

    В настоящей работе мы не обсуждаем вопросов, относящихся к возможным направлениям и перспективам развития самой классической теории как феноменологической теории (независимо от квантовой механики). Точка зрения автора на эти вопросы и некоторые результаты, полученные в этом направлении были изложены в других работах [c.13]

    Для аналитических целей более подходящим оказалось использование линейно изменяющегося напряжения. Однако недостаточное развитие теории метода и отсутствие совершенной измерительной аппаратуры долгое время сдерживали развитие этого направления. Возможности осциллографической полярографии более полно стали раскрываться после появления теоретических и экспериментальных исследований Рэндлса [Л. 75 и 76]. [c.96]

    Развитие теории адсорбции шло, в основном, по двум направлениям. В тех случаях, когда геометрическая и химическая структура поверхности оставалась неопределенной или была заведомо весьма неоднородной, теория ограничивалась установлением эмпирических зависимостей между наблюдаемыми на опыте величинами, как это делается в потенциальной теории адсорбции [2, 3] и в некоторых статистических теориях адсорбции на неоднородных поверхностях [4]. В этом направлении достигнуты некоторые важные в практическом отношении результаты, но выводы этих теорий неоднозначны [3], а их истолкование на молекулярном уровне остается затруднительным или невозможным. В тех же случаях, когда путем соответствующего направленного синтеза и модифицирования удавалось получить весьма однородные адсорбенты с воспроизводимым химическим строением поверхности, оказалось возможным развить теорию адсорбции на основе общей молекулярно-статистической обработки той или иной модели системы адсорбат—адсорбент и приближенного учета потенциала молекулярного взаимодействия (см. обзоры [5-12]). [c.13]

    Физическая органическая химия развивается по трем основным направлениям 1) исследование влияния строения реагентов и условий взаимодействия на равновесие и скорость реакций, 2) изучение механизмов реакций и 3) применение статистической физики и квантовой механики к исследованию органических веществ и их реакций. Конечно, эти проблемы, если их рассматривать в щироком плане, охватывают значительную часть химии вообще. Поэтому следует подчеркнуть особенность, характерную для методологии физической органической химии главное внимание уделяется тем вопросам, решение которых важно для развития органической химии в целом. Достижения физической органической химии основаны на применении теорий и методов физической химии к огромному материалу, накопленному за 100 лет интенсивного изучения органических реакций и развития теории строения органических соединений. Практически неисчерпаемое разнообразие органических структур открывает единственную в своем роде возможность подробного систематического подхода к проблемам реакционной способности. Изучение реакций сложных природных веществ способствовало развитию теоретических представлений физической органической химии, которые теперь в свою очередь помогают устанавливать строение природных соединений. [c.7]

    Говоря о реакционной способности органических соединений, о скорости и направлении органических химических реакций и о зависимости их от строения реагирующих веществ, нельзя не упомянуть проблему катализа — гомогенного и гетерогенного. Развитие теории катализа тесно связано, с одной стороны, с вопросами теории строения, а с другой — с учением о поверхностных явлениях — традиционной областью интересов советских физико-химиков. Мы не имеем возможности останавливаться в настоящем докладе на этих вопросах, несмотря на то, что они имеют близкое отношение к проблемам теории химического строения. Все же необходимо отметить, что изменение скорости реакции, вызываемое катализатором, тесным образом связано с теми или иными изменениями реагирующих веществ па поверхности катализатора, а эти изменения не могут не быть обусловлены их химическим строением, взаимным влиянием атомов в молекулах и природой поверхности катализатора. Отметим еще,что многие весьма важные для развития теории химического строения поло- >кения и открытия были найдены на основе изучения именно каталитических процессов, например открытие необратимого катализа Н. Д. Зелинским. [c.60]

    Я совершенно согласен, что основным направлением развития органической химии, как это было и раньше, должен быть органический синтез в самом широком смысле этого слова. Органическая химия, на основе теории химического строения, имеет неограниченные возможности создания новых веществ самых различных типов, обладающих широким диапазоном разнообразных свойств. С полной уверенностью мы может ожидать в этом отношении получения веществ, крайне интересных как с теоретической, так и с практической стороны. Также следует развивать изучение природных веществ и расшифровку их строения, чему, мне кажется, уделяется недостаточное внимание. [c.77]

    Взаимодействие растворимых веществ с сорбентами обычно изучается с целью создания сорбционных методов разделения смесей веществ. Вторая возможная область применения этого явления заключается в использовании сорбции для изучения свойств сорбируемых молекул. Это направление успешно развивается и уже в настоящее время позволяет определять эквивалентный вес сорбата, число зарядов в молекуле, оценивать молекулярный вес. Особенно важен сорбционный метод для изучения ряда свойств макромолекул. Он является важным дополнением к гидродинамическим методам анализа размеров и формы молекул глобулярных белков. Наряду с этим изучение электрохимических свойств макромолекул сорбционными методами позволяет получить ряд дополнительных сведений по сравнению с результатами потенциометрического титрования. Естественно, что для развития теории сорбции макромолекул необходимо предварительно изучить сорбцию низкомолекулярных веществ аналогичного типа. В связи с этим здесь последовательно рассматривается сорбция аминокислот, пептидов и белков. Изучение законов сорбции этих групп веществ может быть использовано также для их разделения как на основе одноактных сорбционных, так и хроматографических методов. [c.187]

    Дальнейшее развитие теории, по-видимому, может идти в направлении расширения путей установления конфигурации активированных комплексов, разработки возможностей получения информации об их параметрах, совершенствования расчетного аппарата, либо на основе новых представлений. [c.111]

    В течение последних нескольких лет все большее внимание уделяется повышению точности экспериментальных исследований полимерных систем. Это направление развития исследований весьма актуально, ибо только точные работы позволяют проверить обоснованность современных теорий и дают возможность выяснить тонкие детали структуры и особенности свойств полимеров. Хотя в принципе определение вязкости раствора полимера можно выполнить с требуемой степенью точности, использование этих измерений для вычисления среднего молекулярного веса может привести к таким ошибкам в конечном результате, которые иногда значительно превышают ошибки эксперимента. Ошибочные результаты могут возникать, например, при недостаточных сведениях о распределении по молекулярному весу или. если исследуемый полимер содержит разветвленные макромолекулы. Меньшее влияние оказывают другие факторы, обсуждаемые ниже в этой главе. Для того чтобы получить наиболее достоверные результаты при использовании метода вискозиметрии, необходимо учесть ограничения, присущие этому методу, а также обычные источники ошибок эксперимента. [c.227]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Оксредметрия в своих теоретических основах опирается на соответствующие разделы термодинамики, учения о растворах и электрохимической кинетики. Термодинамический аспект и применение оксредметрии для изучения основных взаимодействий в растворах полно и последовательно изложены в [12]. Однако возможности и ограничения потенциометрических измерений в связи с электрохимическими особенностями редокс-систем, метрологические основы измерений, трудности интерпретации результатов измерений в конкретных средах или процессах не получили такого же полного освещения в имеющейся советской и зарубежной литературе. В то же время от правильного понимания этих вопросов во многом зависит перспектива дальнейшего прогресса оксредметрии. После того, как были сформулированы основы оксредметрии (т. е. после 1950 г.), значительные успехи были достигнуты в целом ряде научных направлений, имеющих непосредственное отношение к более глубокому пониманию существа измерений, к развитию теории метода. Здесь следует отметить следующее. [c.5]

    Успехи, достигнутые в формальном обосновании предельных термодинамических закономерностей также определяют и развитие теории термодинамических процессов в электролитах. Здесь мы впервые сталкиваемся с отклонением от равновесного распределения. Основы теории необратимых процессов впервые были заложены Онзагером [74]. Дебай и Фалькенгаген [123] распространили представления Онзагера на случай проводимости переменного тока. Современные теории необратимых процессов в электролитических растворах исходят, в принципе, нз тех же основных уравнений, которые были использованы в ранних работах [74] и [123]. Объясняется это тем, что общая молекулярная теория необратимых процессов находится еще в стадии разви-гия. Кроме того, электролитический раствор представляет собой сложную систему, точное описание которой требует преодоления очень больших математических трудностей. Тем не менее оказывается возможным путем введения ряда общих допущений и использования концепции ионного диаметра значительно расширить область применимости предельных закономерностей. Успехи, достигнутые в этом направлении, рассматриваются ниже. [c.59]

    В этом направлении было создано множество теорий. На важнейших из этих теорий мы ниже остановимся. Эти химические теории однако до сих пор не дали ни базы для расчета нитрозного метода, ни возможности установления оптимальных условий процесса, необходимых для научно обоснованного развития этого метода. Параллельно с историей развития теорий этого метода и независимо от них нитрозный метод развивался почти исключительно эмпирически. [c.255]

    Величина ККМ — важная коллоидно-химическая характеристика ПАВ. Она связана с олеофильно-гидрофильным балансом молекул ПАВ, характеризует их склонность к образованию мицеллярных структур и в известной степени служит мерой олеофильности этих структур. Величина ККМ зависит как от особенностей молекулярного строения ПАВ, так и от внешних факторов — температуры, давления, присутствия в растворе электролитов, полярных и неполярных органических веществ и т. д. Закономерности влияния различных факторов на ККМ и свойства мицелл представляют интерес и с точки зрения развития теории мицеллообразования, и в практическом отношении, поскольку их изучение открывает возможности регулирования коллоидных свойств растворов ПАВ путем направленного изменения их молекулярной структуры, а также за счет различных добавок. [c.58]

    Несомненно, что в будущем технические возможности исследования спектров комбинационного рассеяния значительно возрастут. Например, исследование химических частиц, изолированных в твердых матрицах, методом спектроскопии КР все еще невозможно из-за слабой интенсивности рассеяния. Использование мощных лазеров в качестве источников возбуждения может решить эту проблему, и работа в этом направлении успешно осуществляется в настоящее время во многих лабораториях ). Применение лазерных источников стимулирует также и поляризационные исследования, что сильно облегчает интерпретацию спектров. Накопление экспериментальных данных приведет к лучшему пониманию различных эффектов и развитию теории, которая в конечном счете объясняет эксперимент. [c.404]

    В дальнейшем было обращено вниманяе на постулированное в простой теории постоянство коэффициентов активности ионов в стекле. Можно отметить два основных направления развития теории, в которых пересматривается это положение. В одном из них, представленном работами Н. А. Измайлова и А. Г. Васильева 21, Ландквиста [22], Лендьеля с сотрудниками [23], Эйзенмана [1, 24] и Швабе 25], устанавливается эмпирически или на основе тех или иных теоретических соображений общий вид зависимости активностей ионов в стекле от их концентраций. Другое направление, развиваемое Б. П. Никольским с сотрудниками [26—29], также пересматривает положение о постоянстве коэффициентов активности ионов, но на основе представлений о неравноценности связи ионов в различных ионогенных группах стекла. В общем, оба эти направления не исключают друг друга, а скорее взаимно дополняют, так как ими учитываются разные стороны взаимодействия ионов в сложной структуре стекла. Первое рассматривает зависимость прочности связи каждого из ионов в стекле от положения ионообменного равновесия (в пределах однородной по предположению среды), что отражается в устанавливаемых авторами зависимостях коэффициентов активности ионов от концентрации. Второе направление обращает основное внимание на возможные проявления химической неоднородности структуры (на различие в прочности связи конов в разных структурных ионогенных группах стекла). [c.308]

    Изложенные выше математические модели можно было бы развить намного полнее, чем это сделано в настоящей главе [2, 14]. В частности, можно попытаться рассмотреть случай, когда зародыши распределены неравномерно например, когда зародышеобразование происходит в точках контакта зерен. Приведенный в разд. 10.3.3 расчет, учитывающий степень дисперсности реагента, дает другое направление развитию теории. С этим вопросом близко соприкасаются также теории, изложенные в следующей главе. Дополнительные возможности развития могут быть связаны с обобщениями Аврами [1]. [c.308]

    О кинетике химических реакции в потоке. В настоящее время одной из распространенных форм осуществления многих процессов является проведение их путем непрерывного пропускания потока реагирующих газов (или жидкостей) через слой твер- дого или жидкого реагента или просто через реакционный аппарат с определенной температурой. Так можно осуществлять, например, сушку газов или насыщение их парами жидкости, адсорбцию газов твердыми реагентами и многие химические реакции гомогенные или гетерогенные и, в частности, каталитические (реакции в потоке). Такая форма проведения обеспечивает длительную непрерывность процесса при благоприятных возможностях поддержания постоянного режима, так как каждый данный аппарат может работать при постоянных условиях температуры и пр. Эта форма проведения процесса влияет на кинетику его и приводит к своеобразной зависимости кинетики от таких условий проведения, как размеры и форма реакционного аппарата, величина свободного сечения, скорость пропускания газов. В результате кинетика их становится весьма сложной. Различным областям применения в известной степени соответствуют различные направления развития теории. В одних успешно используются методы математического моделирования, в других применяются методы, основанные на выводах гидродинамики. Однако описание их выходит за рамки этой книги. [c.698]

    В 1916 г. В. Коссель выдвинул предположение, что при образовании химической связи происходит передача электронов от одного атома к другому в результате образуются заряженные частицы, которые притягиваются друг к другу. Это представление правильно отразило природу ионной (гетерополярной, электровалентной) связи, характерной для большинства неорганических соединений. Однако было ясно, что в таких молекулах, как водород Нз, хлор С1г, метан СН4, и в более сложных органических соединениях природа связи должна быть иной. Основы для понимания этого типа связи были заложены в работах Г. Льюиса и И. Ленгмюра (1913— 1920 гг.), указавших на особую роль октета электронов как устойчивой электронной оболочки и на возможность создания октета не только путем передачи, но и путем обобщения электро1Юв. От этих работ ведет свое начало представление о существовании особого типа связи (ковалентной, гомеополярной), осуществляемой парой электронов. Так валентная черточка классической теории строения получила физическое истолкование. И все же перед учеными продолжали стоять вопросы почему именно электронная пара необходима для создания ковалентной связи, почему устойчив именно октет электронов, в каком состоянии находятся связующие электроны Поиски ответа на эти вопросы с помощью зародившейся в середине 20-х годов квантовой механики явились одним из направлений дальнейшего развития теории химической связи. Для судьбы электронных представлений в органической химии важнейшее значение имело и развитие в другом направлении объяснение с новых позиций богатого экспериментального материала органической химии предсказание новых, еще неизвестных экспериментальных фактов. [c.38]

    Исследователи — физико-химики используют черные углеводородные пленки для изучения устойчивости и других свойств эмульсий, так как модельные пленки отражают практически все свойства жидких слоев, разделяюш их капельки воды в устойчивых обратных эмульсиях, широко распространенных в химической технологии. С позиций молекулярной физики черные углеводородные пленки представляют самостоятельный интерес как удобный инструмент для экспериментальной проверки и дальнейшего развития теорий дальнодействующего молекулярного взаимодействия в тонких слоях жидкостей и как модель жидкокристаллического состояния вещества (смектической фазы). Как модель основного структурного элемента клеточных мембран (бимолекулярного липидного слоя) черные углеводородные пленки приобрели огромную популярность при исследовании разнообразных биофизических и биохимических процесов, протекающих в биологических мембранах и в особенности при изучении индуцированного ионного транспорта. В качестве самостоятельной перспективной области исследования черных углеводородных пленок намечается направление, связанное с возможностью использования пленок и толстых слоев жидкостей, содержащих мембраноактивные ком-плексоны, для создания особого класса ионоселективных электродов. [c.3]

    Другим важным направлением исследований для развития теории устойчивости черных пленок должно быть детальное изучение ориентации и степени выпрямленности молекул ПАВ, так как только при выяснении этих свойств появится возможность рассчитать величину адсорбционной составляющей на основе теории стерической стабилизации. [c.163]

    В дальнейшем модель сетки развивалась в двух направлениях. Во-первых, исходное положение теории о том, что распределение расстояний между узлами флуктуацнонной сетки описывается вероятностным законом Гаусса, было обобщено с тем, чтобы включить в рассмотрение негауссовы члены распределения расстояний (М. Ямамото). Это приводит к появлению квадратичных членов в зависимости напряжения сдвига от скорости деформации и предсказанию некоторых нелинейных эффектов. Однако и в этом случае вязкоупругие свойства модели не конкретизируются, так что теория оставляет возможность свободы выбора формы релаксационного-спектра и, следовательно, вида всех вязкоупругих функций. Во-вторых, было высказано предположение (А. Кей) о том, что вероятность образования узлов или время их жизни зависят от действующего напряжения. Это предположение, существенно обобщающее теорию Лоджа, позволяет описать различные нелинейные эффекты, в частности явление аномалии вязкости. Однако этот подход связан с произвольным выбором вида функции, которая призвана учитывать влияние напряжений па параметры, характеризующие свойства узлон флуктуацнонной сетки. Это направление развития модели сетки, отличаясь большой гибкостью, не позволяет конкретизировать предсказания относительно вида вязкоупругих свойств среды. [c.297]

    Гл. 1 этой книги можно в известной мере рассматривать как своеобразное подведение итогов целого периода экспериментальных исследований распада небольших молекул в ударных волнах. Первая задача этого периода заключалась в том, чтобы подавить всевозможные вторичные процессы и в наиболее чистых условиях получить константу скорости мономолекулярного распада ка. Вторая задача состояла в том, чтобы на основании измеренной зависимости от плотности и температуры получить сведения о механизме активации исходных молекул. Поскольку в настоящее время нет достаточно развитой теории обмена энергией при столкновениях возбужденных многоатомных молекул, механизм активации обычно моделируется путем задания функции распределения для переданной энергии. Здесь детально рассмотрены два предельных механизма механизм сильных столкновений и механизм ступенчатого возбуждения. Известно довольно много приближенных теорий, основанных на модели сильных столкновений. Наиболее распространенной среди них является теория Райса — Рамспергера — Касселя — Маркуса (РРКМ). В настоящее время значительный интерес представляет исследование различных отклонений от теории РРКМ, связанных главным образом с тем, что константу скорости превращения активных молекул нельзя считать зависящей только от полной энергии молекулы, а необходимо учитывать динамику внутримолекулярного перераспределения энергии. В книге эти вопросы освещены явно недостаточно, и, чтобы восполнить этот пробел, читателю можно рекомендовать монографию Никитина [2], а также работы Банкера (например, [3]). Другое весьма общее ограничение направления, использующего предположение о сильных столкновениях, отмечено в работах Кузнецова [4] и связано с тем, что с повышением температуры все больше нарушается равновесное распределение по внутренним степеням свободы частиц в процессе их диссоциации. Тем не менее имеются случаи, когда даже при сильном отклонении от равновесия возможно описание кинетики реакции на основе представления о равновесной константе скорости. Если среди распадающихся молекул происходит быстрый обмен колебательными квантами, то неравновесность выражается лишь в том, что система характеризуется не одной, а двумя или несколькими колебательными температурами. При температурах ниже некоторой критической температуры То константа скорости мономолекулярного распада определяется кинетикой переходов на верхние колебательные уровни, где обмен колебательными квантами не играет существенной роли, и только для таких температур константа скорости может быть вычислена [c.6]

    Развитие теории активного комплекса в направлении изучения конфигурации переходного состояния и возможности согласованных электронных переносов (работы Робинсона, Юнга, Караша, Свейна, Матье, Сыркина, Уитмора, Арнольда и других, стр. 323) приводит к некоторым поправкам в ранее сущест-вовавщие представления о механизме реакций, в частности, и в представления о механизме ионных процессов. По-видимому, в значительном числе случаев вместо отщепления и присоединения протона (или вообще ионов) имеется энергетически более выгодный циклический перенос электронов. [c.371]

    Наконец, следует отметить развитие теории ректификации, позволившее не только осмыслить детали этого процесса, но и создать рациональные методы оценки эффективности колонок. Лишь после этого стало возможно изучать влияние различных факторов на процесс ректификацшг, что позволило сознательно подходить к конструированию приборов и подбору условий проведения разгонки при решении конкретных задач. Одна из первых работ в этом направлении была проведена еще в 1926 г. [c.82]

    В серии недавних работ Кобатаке и Фюита развита теория процессов переноса через заряженные мембраны на основе рассмотрения локальных потоков, проходящих внутри пор в направлении совпадающем с направлением тока. Некоторые модификации этой теории были привлечены при обсуждении ряда экспериментальных результатов, связанных с изучением мембранного осциллятора [65, 721. В связи с возможным практическим значением такого подхода к решению проблемы при обсуждении его мы коснемся некоторых подробностей и одновременно введем некоторые изменения и поправки. [c.493]

    Создание Бутлеровым в начале второй половины XIX в. теории химического строения является величайшим событием в истории химии и по праву может быть поставлено в один ряд с такими событиями, как открытие Д. И. Менделеевым периодического закона химических элементов и создание Ч. Дарвином эволюционного учения в биологии. Только после создания теории строения последовали исключительно мощный расцвет органической химии и неразрывно с ним связанное развитие промышленности органического сиитеза. Теория химического строения явилась тем маяком, который на протяжении 90 лет освещает развитие всех направлений химии. Громадные достижения органической химии, которые привели к созданию таких важных отраслей химической промышленности, как анилинокрасочная, фармацевтическая, искусственного и синтетического волокна, синтетического каучука, высококачественного моторного топлива, промышленность антибиотиков, пластических масс, инсекто-фунгисидов,— все эти достижения стали возможны только благодаря теории химического строония, которая была и остается неизменной путеводной звездой во всех исследованиях и приложениях органической химии. [c.14]

    Одно из основных направлений развития препаративной хроматографии — это переход от лабораторного к промышленному применению метода. При пе- реходе к промышленному использованию препаративной хроматографии потребуется рассчитывать колонну, что невозможно без создания теории, учитываюш.ей нелинейность изотермы сорбции и форму хвоста пиков. С экономической точки зрения препаративная хроматография как промышленный метод разделения весьма перспективна. Однако для практической реализации этих возможностей необходимо решить ряд технических проблем, основной из которых является несомненно сохранение высокой эффективности при увеличении диаметра колонны свыше 100 мм. [c.206]

    Применение сорбционных методов (молекулярной адсорбции, ионного обмена) позволяет в несколько десятков раз сокращать объемы растворов на первой стадии очистки, так как сорбция антибиотиков может производиться с емкостью, составляющей десятки и сотни граммов антибиотиков на грамм сорбента. Создание специфических, избирательно сорбируюпгих вещества ионообменных смол, большое разнообразие ионитов, возможность их направленного синтеза позволили разработать многочисленные варианты сорбционных методов выделения и очистки разнообразных классов 1 еществ. Развитие теории сорбции и хроматографии открыло новые возможности для обоснованного выбора эффективного метода извлечерпш многих антибиотических веществ. Ввиду этого весьма важно дать систематическое изложение основ теории сорбции и хроматографии и приложения этих методов к проблеме извлечения, разделения и очистки антибиотиков. [c.5]


Смотреть страницы где упоминается термин Возможные направления развития теории: [c.598]    [c.239]   
Смотреть главы в:

Водородная связь -> Возможные направления развития теории




ПОИСК







© 2025 chem21.info Реклама на сайте