Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОБМЕН ЭНЕРГИИ В ЖИВОМ ОРГАНИЗМЕ

    В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды НгО и углекислого газа (диоксида углерода) СОг. При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов — 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происхо- [c.8]


    Если исключен обмен теплотой между системой и окружающей средой, то система называется адиабатически изолированной. Система называется закрытой (замкнутой), если между ней и окружающей средой возможны все виды взаимодействия, кроме обмена веществом. Примером закрытой системы является закрытый сосуд с веществом, баллон с газом и т. п. Открытой называется система, которая может обмениваться с окружающей средой и веществом и энергией. Примером открытой системы является живой организм. [c.19]

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]

    Обмен веществ и энергии в живых организмах > [c.16]

    Для А. характерен постоянный обмен в-вом и энергией с гидросферой, литосферой и живыми организмами, а также с космич, пространством. Плотность, давление и состав воздуха непрерывно меняются при увеличении расстояния от поверхности Земли. А. делят на оболочки-тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Переходные области А. между соседними оболочками называют соотв. тропопауза, стратопауза и т. п. [c.212]

    Различные клетки многоклеточных организмов отличаются друг от друга, однако каждая растительная клетка имеет общие черты строения и в каждой находятся общие внутриклеточные структуры, выполняющие аналогичные функции. Каждая растительная клетка состоит из цитоплазмы и ядра. Цитоплазма окружена клеточной оболочкой, а ядро — ядерной оболочкой. Цитоплазма — это очень сложная коллоидная система. Дисперсной средой ее служит вода, в которой растворены минеральные соли, сахара, аминокислоты, органические кислоты и многие другие вещества. Во взвешенном состоянии в цитоплазме находятся различные включения и большое число органелл, или структур, разного состава и размера. В последнее время с помощью дифференциального центрифугирования, электронной микроскопии, и других методов исследования удалось установить огромную роль этих структур в обмене веществ и энергии в живых организмах. [c.27]

    Обмен энергии в живом организме 499 [c.499]

    ОБМЕН ЭНЕРГИИ В ЖИВОМ ОРГАНИЗМЕ [c.499]

    При формулировке первого закона термодинамики предполагается, что энергия может преобразовываться только в теплоту или работу. Однако принципиально энергия системы можег меняться также при изменении количества вещества при удалении вещества из системы оно уносит часть внутренней энергии этой системы, а при поступлении вещества в систему последняя получает дополнительное количество энергии. Системы, в которых возможно изменение количества вещества за счет его притока или выноса из системы, называют открытыми. Если такой процесс невозможен, систему называют замкнутой. Следует отличать еще изолированную систему, в которой невозможен обмен с внещней средой не только веществом, яо и энергией. В изолированных системах энергия всегда остается постоянной. Термодинамическое исследование открытых систем приобрело важное значение при переходе к живым организмам, которые находятся в обмене веществом с внешней средой. Эти системы также широко используются при моделировании непрерывных процессов в химической промышленности, где в химический реактор (систему реакторов) непрерывно поступают исходные вещества, а на выходе— конечные продукты. Теория открытых процессов (систем) достаточно хорошо разработана, поскольку исторически она возникла одновременно с термодинамикой необратимых процессов, однако при дальнейшем изложении теория открытых процессов не будет рассматриваться более глубоко. [c.220]

    Живые организмы не составляют исключения в том смысле, что обмен энергии у них подчиняется всем обычным физическим законам. Процессы роста и поддержания жизни требуют затрат энергии, которые должны быть каким-то образом возмещены. Живые организмы поглощают из окружающей среды энергию в такой форме, чтобы ее можно бьшо использовать в конкретных условиях их существования при данных значениях температуры и давления. Затем они возвращают в среду эквивалентное количество энергии, но уже в другой, менее доступной для них форме. I Полезная форма энергии, которая требуется живой клетке, называется свободной энергией ее можно определить просто как энергию, способную совершать работу при постоянных температуре и давлении. Менее полезный вид энергии, возвращаемый клеткой в окру- [c.16]

    Обмен веществ включает как синтез, так и распад многих химических соединений в клетках. У животных расщепление компонентов пищи до более простых веществ обеспечивает организм не только энергией, но и химическими соединениями, которые используются затем при синтезе молекул, необходимых для роста. Подобным же образом каждая отдельная клетка любого живого организма синтезирует или поглощает из окружающей среды низкомолекулярные вещества и из них, как из кирпичиков, строит крупные молекулы. В то же время в клетках имеются ферменты, расщепляющие любые синтезированные организмом соединения. В итоге устанавливается стационарное состояние, при котором сложные соединения непрерывно синтезируются в ходе одних процессов и распадаются в ходе других. На этом основана замечательная система самообновления наших тканей. [c.11]


    Обмен белков занимает особое место в многообразных превращениях веществ, характерных для всех живых организмов. Выполняя ряд уникальных функций, свойственных живой материи, белки определяют не только микро- и макроструктуру отдельных субклеточных образований, специфику организации клеток, органов и целостного организма (пластическая функция), но и в значительной степени динамическое состояние между организмом и окружающей его средой. Белковый обмен строго специфичен, направлен и настроен, обеспечивая непрерывность воспроизводства и обновления белков организма. В течение всей жизнедеятельности в организме постоянно и с высокой скоростью совершаются два противоположных процесса распад, расщепление органических макромолекул и надмолекулярных структур и синтез этих соединений. Эти процессы обеспечивают катаболические реакции и создание сложной структурной организации живого из хаоса веществ окружающей среды, причем ведущую роль в последнем случае играют именно белки. Все остальные виды обмена подчинены этой глобальной задаче живого—самовоспроизведению себе подобных путем программированного синтеза специфических белков. Для осуществления этого используются энергия обмена углеводов и липидов, строительный материал в виде углеродных остатков аминокислот, промежуточных продуктов метаболизма углеводов и др. [c.409]

    Весь растительный и животный мир (вообще все живые организмы) зависят друг от друга, поскольку между ними через внешнюю среду постоянно происходит обмен энергией и материей. [c.17]

    Между живым организмом и окружающей его средой происходит постоянный обмен веществ. Закон сохранения вещества и энергии, открытый М. В. Ломоносовым, позволил установить неразрывную связь между обменом веществ и обменом энергии. [c.116]

    Обмен веществ ъ растениях неразрывно связан с обменом энергии. Изучением процессов обмена энергии в живых организмах занимается раздел биохимии, который называют биоэнергетикой. [c.15]

    По-видимому, ключом к объяснению возникновения жизни на Земле является понимание явления, известного под названием естественный отбор . Естественный отбор должен был лежать в основе перехода к метаболизму от набора случайных химических реакций. Метаболизм (обмен веществ) присущ только жИвым организмам, он представляет собой ряд молекулярных превращений, в результате которых организм получает энергию для жизни, роста и воспроизводства. [c.30]

    БИОХИМИЯ (биологическая химия). Наука о химическом составе живых организмов (статическая Б.) и химических превращениях веществ и энергии, которые лежат в основе жизнедеятельности организмов, об обмене веществ в них (динамическая В.). Но объектам исследования Б. разделяют обычно па Б. растений, Б. животных и Б. микроорганизмов. [c.45]

    Однако объяснять причину старения лсивого организма только старением его коллоидов нельзя. Как известно, в организме происходит непрерывный обмен веществ, процесс ассимиляции и диссимиляции, разрушение органической субстанции и образование ее, И хотя протоплазма всех организмов на.ходится в коллоидном состоянии, причины старения их кроются не в физико-химических, а более сложных, биологических, процессах. В самом деле, в любом растворе того или иного коллоида не наблюдается специфического, присущего именно живым организмам обмена веществ и энергии, явлений ассимиляции и диссимиляции. Если у коллоидов прото- [c.398]

    Что касается способа существования живой материи, то, наряду со всеобщим признанием процесса самообновления всех ее химических составных частей, установлены важные особенности обменных процессов в живых организмах. Наиболее существенной является энергетическая направленность этих процессов. Жизнь может поддерживаться лишь при постоянном потреблении энергии, освобождающейся за счет превращения веществ окружающей среды. Эта энергия необходима для поддержания высокой степени организации биологических структур. Последний процесс находится в диалектическом противоречии с более общим процессом нарастания энтропии системы. Можно сказать, что жизнь — это борьба с энтропией. [c.7]

    Однако объяснять причину старения живого организма только старением его коллоидов нельзя. Как известно, в организме происходит непрерывный обмен веществ, процесс ассимиляции и диссимиляции, разрушение органической субстанции и образование ее. И хотя протоплазма всех организмов находится в коллоидном состоянии, причины старения их кроются не в физико-химических, а более сложных, биологических процессах. В самом деле, в любом растворе того или иного коллоида не наблюдается специфического, присущего именно живым организмам обмена веществ и энергии, явлений ассимиляции и диссимиляции. Если у коллоидов протоплазмы в процессе ее жизнедеятельности и наблюдается постепенное понижение водосвязывающей способности, уменьшение стойкости и изменение других свойств, сходных с изменениями коллоидных растворов, то они происходят в результате направленного изменения химического состава коллоидов организма, определяемых процессами обмена веществ. [c.489]

    Одна из особенностей живых организмов состоит в том, что все они представляют собой открытые системы, которые способны извлекать, преобразовывать и использовать энергию окружающей среды либо в форме органических питательных веществ (хемотрофы), либо в форме энергии солнечного излучения (фототрофы). Обмен энергией в организме тесно связан с обменом веществ (метаболизмом). Метаболизм можно определить как совокупность ферментативных химических реакций, которые могут протекать в клетке. Активность ферментов, катализирующих эти реакции, регулируется с помощью чувствительной системы взаимосвязанных механизмов, поэтому метаболизм представляет собой высококоординированную, целенаправленную клеточную активность. Он выполняет следующие функции  [c.189]

    Все сказанное послужило основанием внести суш,ественные изменения в третье издание учебника по физической и коллоидной химии. В учебник включены новые главы элементы учения о превращениях энергии при химических процессах (первое и второе начало термодинамики и т. д.). Эти знания необходимы медику для правильного представления об обмене энергии, протекающем, в живом организме в результате разнообразных биохимических процессов. Внесен раздел о физико хнмичес1р1х свойствах и биологическом значении воды, которая является одной из важных составных частей животного организма, а также в учебник внесен ряд дополнений почти во все разделы курса по физической и коллоидной химии, из которых одни несколько расширяют имеющиеся представления по отдельным главам учебника, другие же являются дополнениями о новых данных науки, полученных в последние годы. [c.3]

    Процессы, протекающие в биологических объектах, принадлежат к так называемым открытым системам, в которых происходит постоянный обмен веществ и энергии с внешней средой. Обмен веществ в открытых системах обеспечивает непрерывное поступление и удаление различных метаболитов. В результате этого в живом организме многие реакции не достигают стадии динамического равновесия, как это происходит в замкнутых системах, например in vitro , а протекают непрерывно, находясь в состоянии стабильного превалирования прямых реакций. [c.115]

    Экосистема - единый природный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные компоненты связаны обменом веществ и энергии. Экосистема является саморазвивающейся термодинамически открытой системой. В отечественной литературе используется эквивалентное понятие "биогеоценоз". [c.295]

    В связи с указанным, многие радиоактивные изотопы нашли широкое применение в качестве радиоактивных индикаторов, или меченых атомов. С использованием последних изучаются вопросы биологии (в частности, обмен веществ в живых организмах). Метод нашел разностороннее использование в сельском хозяйстве. Например, изотопные индикаторы позволяют наблюдать за ростом корней растений непосредственно в почве, успешно изучаются усвояемость удобрений растениями, кормов — животными и т. д. (о меченом атоме С-14 см. гл. 23, 5). Изотопные индикаторы играют важную роль в исследованиях трения, износа деталей машин, системы рациональной смазки действующих механизмов. Они позволяют дистанционно (на расстоянии) контролировать влажность зерна в потоке, плотность и толщину проката и вообще листового материала самого разнообразного характера. Для этих целей широко используется изотоп Ат (америций, моноэнер-гетический у-излучатель). В космонавтике эффективны автономные генераторы тепловой энергии, построенные на основе изотопов Ри-238, Ст-232 и Ст-244. Эти изотопы находят также применение в медицине. Радиация используется в поисках полезных ископаемых (у-каротаж). В последнее время для аналогичных целей начинают широко применять нейтроны. В качестве источника таковых для обнаружения и оценки газовых и нефтяных месторождений заслужил внимание изотоп калифорния СГ. Область практического применения радиоактивных индикаторов непрерывно расширяется. [c.23]

    Установление химического состава растений, открытие ферментов и выяснение их роли в обмене веществ, открытие витаминов и гормонов, развитие химии аминокислот и белков, жиров и углеводов создали возможность формирования динамической биохимии, с развитием которой стали создаваться единые представления об общих закономерностях процессов обмена зе> щестз и превращений энергии в живых организмах. [c.6]

    АДЕНОЗИНТРИФОСФОРНАЯ КИСЛОТА (АТФ). Основное соединение, в котором запасается и переносится энергия, необходимая для осуществления синтетических процессов в обмене веществ, а также для выполнения работы нивыми организмами. В состав АТФ входят остатки аденина, углевода рибозы и три остатка фосфорной кислоты. Энергия, высвобождаемая АТФ, может переноситься почти без потерь на другие соединения или использоваться для синтеза белков, нуклеиновых кислот, углеводов, жиров, витаминов и многих других соединений. Энергия АТФ потребляется также при мышечном сокращении, в нервных клетках и при других видах работы в живых организмах. АТФ в организме образуется из адепозиндифосфорной кислоты (АДФ) и минеральной фосфорной кислоты за счет энергпп, которая выделяется при окислении различных органических веществ в живых клетках или при фотосинтезе за счет световой энергии. Во всех этих процессах энергия, как правило, не теряется, а переходит в особый вид химической энергии, заключенной в фосфатных связях АТФ. При окислении в процессе дыхания грамм-молекулы глюкозы, например, может образоваться до 30 молекул АТФ. [c.14]

    Каким же должен был быть метаболизм первых живых организмов на Земле Эти организмы появились в отсутствие воздуха в том смысле, как мы представляем воздух сегодня. Окружавшая их атмосфера содержала метан и аммиак, а не кислород и азот. Поэтому они должны были получать энергию за счет анаэробного (т. е. безкислородного) разложения молекул пищи. Как ни странно, способность к анаэробному образованию энергии сохранилась во всех живых организмах до настоящего времени, несмотря на то что к арсеналу поддерживающих жизнь обменных процессов добавились новые, более эффективные пути получения энергии. [c.30]

    В живых организмах химическая энергия превращается в те или иные виды работы прямо, без промежуточного образования теплоты. Мы вправе, следовательно, утверждать, что важнейшие обменные процессы (например, тканевое дыхание), обычно изображаемые при помощи уравнений, в которых фигурируют исходные субстраты и конечные продукты превращения (например, jH aOe -f 6О2 6СО2 + 6Н2О 4 680 Ккал), в действительности никогда вживых тканях в такой чистой форме не происходят. В тканях живых организмов эти процессы всегда сопряжены с синтезом тех или других богатых энергией (высокоэргических или макроэргических) соединений (например, аденозинтрифосфата) и выполнением физиологической работы без промежуточного образования теплоты. Подробно эти вопросы рассматриваются в последующих главах. [c.222]

    Конструктивный и энергетический обмен. Физиология изучает процессы, протекающие в живом организме, и их закономерности. Современная материалистическая физиология основана на принципе единства организма с окружающей средой. Взаимодействие организма со средой проявляется в обмене веществ и энергии (метаболизм). Он включает в себя два процесса конструктивный обмен (ассимиляция, или анаболизм) и энергетический (диссимиляция, или катаболизм). В основе конструктивного обмена лежат биохимические реакции, в процессе которых усваиваются вещества, поступающие из окружающей среды, и идет создание биомассы клетки. Сущность энергетического обмена заключается в разрушении веществ, содержащихся в организме, преимущественно в результате гидролитических и окислительных процессов, сопровождающихся выделением энергии, необходимой для биосинтеза. Оба процесса в клетке идут одновременно и сочетаются друг с другом. Энергия, полученная клеткой в процессе обмена веществ, акку.мулируется в соединениях, содержащих химические связи, при разрыве которых выделяется большое количество энергии (макроэргические). Часто это соединения с фосфатными связями, например аденозинтрифос-фат (АТФ). По мере надобности эти вещества подвергаются гидролитическому распаду, сопровождающемуся выделением энергии. [c.210]

    Совокупность химических реакций, протекающих в живом организме, называется обменом веществ, или метаболизмом (от греческого слова т 1аЪо1е — изменение). Это реакции самых различных типов. Рассмотрим, например, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал которые расщепляются в процессе пищеварения на простые сахара и затем через стенки желудочно-кишечного тракта попадают в ток крови. Далее эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и обычный растительный крахмал (СдНюОб) , где X — большое число. Гликоген и другие полисахариды — важные источники энергии в организмах животных. При окислении кислородом они образуют двуокись углерода и воду одна часть освобождаемой при этом энергии идет на производство работы, а другая — на согревание тела живого организма. [c.690]

    Итак, любой живой организм является таким телом, в основе существования которого лежит специфический обмен веществ. Этот обмен веществ является наиболее общим, определяющИхМ фактором для всех других элементарных свойств живого организма — питания, роста, размножения, раздражимости, движения и проч. Любой организм, чтобы осуществлять всю совокупность жизненных проявлений, вынужден непрерывно расходовать определенное количество энергии. Эта энергия освобождается в результате распада органических веществ, входящих в состав протоплазмы. Следовательно, организмы непрерывно разрушают свою собственную протоплазму. Эти процессы распада органических веществ, входящих в состав протоплазмы, называются процессами диссимиляции. [c.9]

    Этот параллелизм не случайный. В том или ином органе происходит внутриклеточный обмен материи и энергии, в основе которого лежат очень сложные химические процессы. Водная среда как растворитель является необходимым условием для разнообразнейших превращений и химических реакций. Только в водной среде могут протекать химические процессы с той интеноивностью, какая характерна для живого организма. Количество воды обусловливает скорость тех или иных биологических процессов. [c.103]


Смотреть страницы где упоминается термин ОБМЕН ЭНЕРГИИ В ЖИВОМ ОРГАНИЗМЕ: [c.7]    [c.330]    [c.76]    [c.76]    [c.209]    [c.17]    [c.152]   
Смотреть главы в:

Органическая химия Том1 -> ОБМЕН ЭНЕРГИИ В ЖИВОМ ОРГАНИЗМЕ

Органическая химия Том2 -> ОБМЕН ЭНЕРГИИ В ЖИВОМ ОРГАНИЗМЕ




ПОИСК





Смотрите так же термины и статьи:

Живые организмы

Энергией обмен

Энергия обменная



© 2024 chem21.info Реклама на сайте