Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика химическая ферментативных реакций

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Одним из характерных проявлений жизни является удивительная способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, pH среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента. [c.134]

    Математические модели кинетики роста микроорганизмов, образования продуктов биосинтеза и утилизации субстратов отличаются от известных моделей химической кинетики. В основу большинства используемых моделей роста микроорганизмов положены уравнения ферментативной кинетики микробиологических процессов [1—4, 23, 27]. Однако, учитывая значительное число протекающих в клетках стадий биохимических ферментативных реакций, применение законов ферментативной кинетики носит в большинстве случаев формальный характер. Отличительной особенностью большинства моделей является использование в качестве основного параметра модели численности или концентрации микробной популяции. Именно большая численность микробных популяций позволяет широко применять при моделировании кинетики роста детерминистический подход, опирающийся на хорошо развитый аппарат дифференциальных уравнений. В то же время известны работы, в которых используются стохастические модели кинетики [25]. Среди них распространены работы, основанные на простой концепции рождения и гибели , что в математическом аспекте позволяет применять аппарат марковских процессов. В более сложных моделях микробная популяция представляется Б виде конечного числа классов, каждый из которых ха- [c.53]

    Влияние температуры на реакции, катализируемые ферментами, по существу не отличается от влияния температуры на любые другие химические реакции. Поэтому методы обработки температурных зависимостей кинетических и равновесных параметров ферментативных реакций также основываются на классических принципах термодинамики и кинетики (см. гл. 4). [c.249]

    Уравнениями бистабильной среды описывается распространение волн горения [3], кинетика некоторых ферментативных реакций [4] и ряд других процессов [5]. Самая простая (но мало реалистическая) схема химической реакции, способной к бистабильному поведению, предложена Шлеглем [6] и имеет вид (см. также гл. 2) [c.144]


    Наука о ферментативном катализе (как и наука о любых химических реакциях) имеет две стороны — это представления о механизме и формальное описание его кинетических (или термодинамических) закономерностей. В первой части книги рассмотрен именно первый (механистический) аспект проблемы вторая часть посвящена формальной (практической) кинетике ферментативных реакций. При этом раздельно проведен кинетический анализ реакций, протекающих в нестационарных условиях (гл. V) и в стационарном режиме (гл. VI). [c.4]

    Релаксационные методы, используемые для исследования быстрых химических реакций в растворе, имеют весьма высокую разрешающую способность. Так, например, метод поглощения ультразвука обнаруживает время разрешения вплоть до наносекундного диапазона [42]. Именно поэтому релаксационная кинетика широко используется при исследовании механизмов ферментативных реакций. [c.214]

    Наиболее полную информацию о кинетике ферментативных реакций дает изучение их протекания в нестационарном режиме (см. гл. V). Исследование стационарной кинетики ферментативных процессов имеет ограниченное значение для понимания многостадийного механизма действия ферментов. Это связано прежде всего с тем,что в общем случае невозможно однозначно приписать экспериментально определяемые значения констант скоростей индивидуальным химическим стадиям (см. 1 гл. V и VI). Тем не менее кинетические параметры типа = = У/(Е](,и Кт.каж, которые, следуют из основного уравнения стационарной кинетики — из уравнения Михаэлиса (6.8), как показал Альберти с сотр. [1], позволяют оценить нижний предел константы скорости любой индивидуальной стадии ферментативной реакции [типа (6.9) или даже более сложного обратимого процесса (5.16)]. [c.268]

    В табл. 33 приведены эффективные константы скорости второго порядка каж, найденные из стационарной кинетики ряда ферментативных процессов. Несмотря на большие различия в химическом механизме катализируемых реакций (гидролиз, элиминирование или присоединение воды, окислительно-восстановительные процессы), наблюдаемые константы скорости обнаруживают удивительное однообразие, приближаясь для лучших (наиболее реакционных) субстратов того или другого фермента к одному и тому же пределу порядка 10 —10 Это наво ит на мысль, что скоростьлимитирующая стадия всех этих разнообразных химических механизмов одна и та же. [c.269]

    Практический курс, предлагаемый вниманию читателя, может рассматриваться как руководство по обработке экспериментальных данных ферментативной кинетики. В основу данной книги положены лекции и практические занятия по кинетике ферментативных реакций. Так как понимание кинетических закономерностей и механизма действия ферментов невозможно без знания кинетических законов простых химических реакций, последним в книге также уделено существенное внимание. [c.3]

    В третьей части книги (гл. 6—8) обсуждаются общие свойства ферментов, вопросы кинетики химических реакций и различные механизмы ферментативного катализа. В гл. 6 достаточно подробно изложены основы ферментативной кинетики, а также рассмотрены механизмы регуляции ферментативных реакций в клетках. В гл. 7 дана рациональная система классификации ферментативных реакций, включающая сведения о различных ферментах и методике их исследования. Гл. 8 посвящена химическим свойствам и специфической роли коферментов, причем эти свойства рассматриваются в связи с типами реакций, описанными в предыдущих главах. В этих главах много справочного материала, и их можно не читать целиком. Для студентов и преподавателей будет совсем нетрудно разобраться в изложенном здесь материале и применять его. При желании эту часть книги можно легко объединить с материалом гл. 2, где обсуждаются свойства белков, углеводов, нуклеиновых кислот и липидов. [c.8]

    Мы надеемся, что книга окажется полезной особенно сейчас, когда значение кинетических методов исследования чрезвычайно возросло. Проработать систематически весь этот курс смогут в основном только те студенты, аспиранты и исследователи, которые специализируются в области химической или биологической кинетики, однако можно надеяться, что книга, снабженная подробным предметным указателем, в любом случае будет удобным справочником по методам обработки кинетических данных химических и ферментативных реакций. [c.4]

    Я начну с релаксационной концепции ферментативного катализа. Первое указание на отклонение каталитического акта ферментативной реакции от классической термодинамики и классической кинетики было, по-видимому, высказано в 1971 году [34]. Было показано, что применение основных постулатов Аррениуса и Эйринга к большинству ферментативных процессов может привести к бессмысленным значениям активационных параметров. Функционирование фермента больше похоже на работу механической конструкции, чем на обычную каталитическую химическую реакцию. Феноменологическая самосогласованная релаксационная теория ферментативного катализа была предложена в 1972 году [35,36]. Принципиальная идея релаксационной концепции заключается не просто в том, что конформационная [c.67]


    В недалеком будущем нужно ожидать осуществления попыток интерпретации поведения даже весьма сложных химических реакций, а типы колебаний будут классифицированы более систематически. В этом контексте, вероятно, будут пересмотрены некоторые из ранних работ. Так как колебательные реакции со всей очевидностью близки к биологическим системам, подчиняющимся кинетике ферментативных реакций, химические реакции в дальнейшем будут исследоваться не только в условиях стационарных состояний, но и с точки зрения их динамики с поиском решений (как устойчивых, так и неустойчивых). [c.83]

    В настоящей главе рассмотрены некоторые вопросы формальной кинетики гомогенных каталитических и ферментативных реакций. Поскольку кинетике химических и ферментативных реакций посвящено достаточно большое число общедоступных изданий, здесь будут кратко рассмотрены лишь общие вопросы. Большее внимание будет уделено разделам, непосредственно связанным со специфическими проблемами катализа. Теория элементарных актов химических и ферментативных процессов изложена в гл. 6, 8. [c.467]

    Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается К. Так, для реакции  [c.134]

    Окончательный перелом произошел после работ С. Зерен-сена [40], показавшего зависимость активности ферментативного действия от величины pH, и работ Л. Михаэлиса и сотр. [41], развивавших идеи Брауна и Анри относительно соединения фермента и субстрата и заложивших основы кинетики ферментативных реакций. Возникновение кинетики ферментативных реакций, которое, кстати, произошло задолго до того, как какой-либо из чистых ферментов стал доступен химическому изучению, окончательно прояснило то обстоятельство, что процесс ферментативного катализа зависит от соединения фермента с субстратом. В основе всех этих представлений лежала обитая идея, что соединение с ферментом вызывает известного рода активацию молекулы субстрата. [c.171]

    При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 4.12) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции прямо пропорциональна концентрации субстрата 8 и в любой момент времени I определяется следующим кинетическим уравнением  [c.135]

    В первой главе даются общие понятия о типах химических связей, основные представления о механизме ферментативных реакций и их общие схемы. На основе законов термодинамики и химической кинетики кратко изложена теория активации молекул, кинетика ферментативного процесса и влияние температуры и реакции среды на биокаталитические процессы. [c.3]

    Представление сложных реак щй в виде некоторой последовательности элементарных стадий (см. стр. 61) позволяет для отыскания уравнений скоростей реа ций использовать теорию графов. В химической кинетике теория графов впервые была применена Баландиным [3, 4], а затем развита в работах Волькенштейна и Гольдштейна [23, 241 — при изучении ферментативных реакций, и Темкина [98] — для выявления независимых маршрутов сложных реакций. [c.97]

    Эти успехи техники создали условия для исследования новых областей. С одной стороны, стало возможным исследовать механизмы реакций (органических или неорганических), ранее называемых мгновенными , что позволило обнаружить большое разнообразие их. Имеется масса новой информации о самых различных типах реакций, включая перенос протона, образование водородной связи, перенос электрона, образование комплексов, ферментативные реакции, инверсию конфигурации и реакции с участием свободных радикалов и триплетных состояний. С другой стороны, физико-химическому исследованию кинетики процессов вообще и их энергетики особенно способствовало исследование реакций, имеющих низкие энергии активации, и реакций, лимитируемых диффузией. [c.12]

    КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ. КИНЕТИКА ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ [c.71]

    Применение методов химической кинетики в исследовании механизма ферментативных реакций оказалось весьма плодотворным. Здесь энзимология опирается на огромный опыт органической и физической химии. [c.7]

    Для изучения механизма действия ферментов большое значение имеет исследование влияния температуры на скорость реакции при отсутствии тепловой инактивации. Это влияние, разумеется, по существу не отличается от влияния температуры на любые другие химические реакции и, следовательно, подход к количественной характеристике этого явления основывается на классических принципах термодинамики и кинетики. Однако использование таких принципов применительно к ферментативным реакциям оказывается гораздо более сложной задачей, вследствие сложности механизмов ферментативных реакций. [c.126]

    Настоящая книга предназначена для лиц, изучающих физиологию растений и уже знакомых с основами химии. Между физиологией и биохимией растений нет резкой границы. Тем не менее учебников по физиологии больше, чем по биохимии. Мы стремились написать книгу, которая дополняет существующие учебники по физиологии растений более подробным рассмотрением химических аспектов. Например, мы даем общее представление о кинетике ферментативных реакций, а не ограничиваемся рассмотрением уравнения Михаэлиса — Ментен в приложении к проблемам физиологии растений. [c.6]

    Иными словами, хотя реакция остается фактически бимолекулярной, ее кинетика описывается уравнением первого порядка. Такие реакции называются псевдомономолекулярными. Сказанное существенно не только для кинетики обычных химических реакций, но главным образом для кинетики ферментативных реакций, где нас обычно интересует лишь начальная скорость, т. е. скорость в тот момент, когда а]= ао. [c.165]

    Трудно сказать, какими соображениями руководствуется фермент при выборе пути активации субстрата. Во всяком случае, изучение кинетики ферментативной реакции и термодинамики образования промежуточных комплексов, хотя и дает ценную количественную информацию, не позволяет полностью раскрыть молекулярный и электронный механизм работы фермента. Здесь, как и нри изучении обычных химических реакций, приходится идти по пути моделирования — грубо говоря, придумывания таких молекулярных механизмов, которые по крайней мере не противоречили бы данным эксперимента и элементарной логике химических реакций. Беда в том, что при достаточно развитом воображении таких хороших механизмов можно придумать довольно много. Ниже мы познакомимся с некоторыми из таких модельных представлений, а теперь посмотрим, как исследователи устанавливают природу активных центров ферментов. [c.97]

    Для определения энергетических (АД ) и энтропийных (А °) параметров на опьгге используют зависимости констант скоростей и равновесий от температуры (см. гл. 2). (Термодинамические параметры могут бьггь определены также прямыми калориметрическими измерениями.) Применяя уравнения химической кинетики к ферментативным реакциям, как, впро- [c.552]

    В заключение надо отметить, что рассмотренные в этом параграфе уравнения кинетики ферментативных реакций (а также уравнения кинетики ингибирования ферментативных реакций, приведенные в 3), дают упрощенную картину явлений, так как описывают протекание процессов в модельных кинетических установках (in vitro). Ферментативные реакции в живых системах (in vivo) протекают в потоке (в открытых системах), поэтому описываются другими по виду уравнениями (см. описание кинетики химических реакций в потоке). Эта область пока разработана недостаточно. [c.514]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Настоящее пособие — первое в мировой литературе учебное руководство по анализу и обработке кинетических данных ферментативных реакций. В первой части курса наложены методы анализа кинетических закономерностей простых химических реакций, изуче-иие их необходимо для дальнейшего понимания кинетики и механизма действия ферментов. Во второй части книги рассмотрены методы обработки кинетических данных ферментативных реакций-Особое внимание здесь уделено новым- подходам, не нашедшим до последнего времени отражения в учебной литературе (новые методы нахождения элементарных констант, влияние диффузии на кинетику действия иммобилизованных ферментов, использование интегральных форм кинетических уравнений и др.). Каждая глава сопровождается О ригинальными задачами с подробными решениями. [c.2]

    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]

    Иначе говоря, во многих случаях правильнее идти от простых кинетических моделей к более сложным, а не наоборот, как в рассмотренных выше примерах. Для этого в ферментативной (и в общем случае в химической) кинетике существуют три уровня исследований. На первом из них рассматривают концентрации исходных соединений и продуктов реакции в зависимости от времени. На втором уровне рассматр.ивают зависимости уже скоростей реакций от концентрации субстратов, продуктов, ингибиторов, активаторов и других эффекторов. Наконец, на третьем уровне рассматривают зависимости тех же скоростей реакций, но уже от условий — pH, температуры, ионной силы, давления, диэлектрической проницаемости и т. д., а также от структуры реагирующих веществ. Первые два уровня необходимы для выяснения кинетического механизма реакции и выявления соответствующей кинетической схемы и в целом все три уровня служат для выявления химического механизма реакции. Следует отметить, что для реакций, катализируемых лизоцимом, исследования на любом из этих уровней явно недостаточны для подведения сколтжо-пибудь значительных итогов, в том числе и в отношении кинетической схемы реакции. [c.186]

    Едва ли необходимо убеждать читателя в том, что в наше время практически ни один эксперимент в органической химии или биохимии не обходится без применения спектроскопических методов. Они широко используются для идентификации продуктов химических и ферментативных реакций или более сложных биологических процессов, обнаружения промежуточных соединений (и тем самым для получения ценной информации о механизмах превращений), исследова- ния кинетики и стереохимии химических реакций, пространственной структуры и динамики молекул и надмолекулярных систем, выяснения строения вновь выделенных природных соединений и для многих других целей. [c.5]

    Фермент можно трактовать как черный ящик , преобразующий входной сигнал — молекулу субстрата, в выходной сигнал — молекулу продукта. Имеются два пути для исследования устройства и механизма работы черного ящика изучение молекулярной структуры фермента и ФСК физическими и химическими методами и изучение кинетики ферментативных реакций. [c.360]

    Ферментативный способ получения моносахаридов во многом лишен недостатков, присущих способу, основанному на кислотном гидролизе, поскольку осуществляется в гораздо более мягких условиях по температуре, давлению и кислотности среды Это требует значительно меньших расходов энергии, предотвращает деструкцию сахаров и образование трудно утилизируемых отходов, снижающих биологическую ценность гидролизатов Наконец, следует иметь в виду возможность решения экологических проблем, связанных с необходимостью создания биотехнологических методов утилизации отходов и вторичных продуктов промышленной и сельскохозяйственной переработки растительного сырья В данной работе рассмотрены теоретические аспекты ферментативной деструкции природных полисахаридов — компонентов растительного сырья Интерес к исследованию этой проблемы обусловлен необходимостью разработки научных основ тех направлений физико-химической энзимологии и ферментативной кинетики, которые связаны с функционированием полифермент-ных систем, особенно с ферментативными реакциями со сложной стехиометрией (когда субстрат является полимером, а промежуточные и конечные продукты — олиго- или мономерами) [c.4]

    Основные научные работы посвящены изучению высокоорганизованных каталитических систем. Предложил (1970) кинетическую теорию мицеллярного катализа, по-лучивщую мировое признание. На основе искусственных светочувствительных ферментных систем создал (1970—1975) химические усилители слабых сигналов. Установил (1974) возможность регулирования скорости ферментативной реакции на молекулярном уровне. Открыл (1975) явление биоэлектрокатализа. Создал (1977) новые методы стабилизации биокатализаторов. Изучал также кинетику жидкофазного окисления углеводородов, элементарные свободнорадикальные реакции. [c.51]

    Однако экспериментальное изучение кинетики ферментативных реакций и количественная оценка кинетических констант реакций, проводимых при определенных условиях (pH, температура, состав среды, действие ингибиторов, активаторов и т. п.), часто позволяют делать опеределенные заключения о химической природе промежуточных соединений и механизме отдельных стадий процесса. [c.8]

    Принципы изучения кинетики ферментативных реакций определяются не столько химической природой реагирующих веществ, сколько общим характером (механизмом) процесса, который может быть описан в кинетических терминах (обратимость реакций, число стадий, порядок реакций и т. п.). В связи с этим представляется необходимым рассмотреть отдельные типы механизмов ферментативных реакций, наиболее часто встречающихся в практике энзимологических исследований. [c.31]

    Можно назвать еще следующие направления, по которым развивается современная ферментология изучение роли и действия отдельных факторов, влияющих на процесс,—температуры, pH среды, ее окислительно-восстановительного потенциала, концентрации субстрата и фермента изучение кинетики ферментативных реакций исследование специфичности ферментов — важнейшего свойства, определяющего их биологическую роль и возможности практического использования химического строения и действия ингибиторов ферментов, обратимого и необратимого, специфического и неспецифического торможения ими реакций изучение строения и функций различных кофакторов, в первую очередь специфических коферментов, их роли в каталитическом процессе, в обмене веществ исследование особенностей ферментных белков — состава, числа цепей, гидродинамических и электрохимических свойств, химической структуры далее — строения активных центров, их числа, их низкомолекулярных аналогов изучение механизма действия ферментов действия полифермент-ных систем и, наконец, образования ферментных белков, в том числе их биосинтез и образование из предшественников префер-ментов). [c.46]

    Как и в кинетике химической, исследования зависимости скорости реакции от темп-ры в интервале, когда не наблюдается тепловой денатурации Ф., позволяют оценивать энергетич. характеристику процесса, важную для понимания механизма действия Ф. Трудность интерпретации экспериментальных данных зависимости стационарной скорости реакции от темп-ры связана с тем, что ферментативные реакции представляют сложные последовательные процессы. Если измеряемая скорость лимитируется к.-л. одной из последовательных реакций, нанр. если ею является максимальная скорость реакции, определяемая одноступенчатым распадом фермент-субстратного комплекса К=А+г[Е]о, то исследование зависимости V= Т) позволяет оценить энергию активации этой стадии реакции. При возможности измерения констант скорости отдельных стадий реакции при различных темп-рах могут быть оценены соответствующие величины энергии активации. Изучение зависимости константы субстрата (К ) от темп-ры позволяет оценивать термодинамич. константы образования ЕВ-комплекса (ДЯ, АР, А8). Применение теории абс. скоростей реакций (теории переходного состояния) при анализе кинетики нек-рых ферментативных реакций позволило оценить энтальпию, энтропию и свободную энергию активации. Общий вывод из относительно небольшого пока числа таких исследований состоит в том, что высокая каталитич. активность Ф. объясняется как существенным снижением энергии активации, так и значительным благоприятным изменехгнем энтропии системы в ходе реакции. [c.210]


Смотреть страницы где упоминается термин Кинетика химическая ферментативных реакций: [c.519]    [c.351]    [c.122]    [c.3]    [c.75]   
Общая химия (1974) -- [ c.500 , c.502 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика ферментативных реакци

Кинетика ферментативных реакций

Кинетика химическая

Кинетика химических реакций

Реакции ферментативные



© 2025 chem21.info Реклама на сайте