Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоэффект и фотоэлементы

    Из различных видов фотоэлектрических детекторов излучения, основанных на внутреннем и внешнем фотоэффекте (фотоэлементы, фотосопротивления, фотоумножители, счетчики фотонов, электронно-оптические преобразователи и усилители, фотодиоды), для измерений в УФ- и видимой областях спектра наибольшее распространение получили фотоэлектронные умножители (ФЭУ) и фотодиоды. [c.79]


    Опыт 305. Внешний фотоэффект (фотоэлемент) [c.167]

    Из различных видов фотоэлектрических детекторов излучения, основанных на внешнем и внутреннем фотоэффекте (фотоэлементы, фотосопротивления, фотоумножители, счетчики фотонов, электронно-оптические [c.393]

    Электронные вакуумные приборы [1, 15] используют внешний фотоэффект (фотоэлементы, фотоэлектронные умножители, электронно-оптические преобразователи) или внутренний фотоэффект (электронно-лучевые трубки). Электронно-вакуумные приборы имеют малый диапазон спектральной чувствительности к тепловому излучению (до длин волн 1,5—3 мкм), что ограничивает их применение. Фотоэлементы не получили широкого применения из-за малой чувствительности. [c.183]

    Фотометры с фотоэлементами с внешним фотоэффектом. Фотоэлемент с внешним фотоэффектом состоит из двух электродов, заключен- [c.40]

    За последние годы быстро развиваются фотоэлектрические методы энергетических измерений. Чаще всего применяются приемники с внешним фотоэффектом — фотоэлементы и фотоумножители. Меньшее распространение получили фотосопротивления и фотоэлементы с запорным слоем. Главной областью применения последних является спектроскопия ближней инфракрасной области. [c.292]

    По принципу действия фотоэлементы подразделяют на фотоэлементы с внешним фотоэффектом,. фотоэлементы с внутренним фотоэффектом и фотоэлементы с запирающим слоем. [c.495]

    Другую группу фотонных приемников составляют приемники с внешним фотоэффектом — фотоэлементы и фотоумножители. [c.42]

    В практике применяются два типа фотоэлементов — фотоэлементы с внешним фотоэффектом и фотоэлементы с внутренним фотоэффектом. Фотоэлементы с внешним фотоэффектом могут быть вакуумные или газонаполненные. Они требуют для своей работы питание от внешнего источника. [c.44]

    Элементы с запирающим слоем (вентильные), из которых наибольшее распространение получил селеновый фотоэлемент, и фотоэлементы с внешним фотоэффектом (вакуумные и газонаполненные баллоны), из которых наиболее известны сурьмяно-цезиевые и кислородно-цезиевые. Первые используются для работы в ультрафиолетовой и видимой областях спектра, вторые — в инфракрасной. [c.470]

    Приборы, в которых используются фотоэлементы с внешним фотоэффектом (например, ФЭК-Н-57, ФЭК-56), также необходимо перед работой настраивать на Т, равное 0%, при полностью закрытых фотоэлементах ( темповой ток ). Для этого.предварительно освещают фотоэлементы в течение 20 мин, затем потоки излучений перекрывают шторкой и приводят в нулевое положение прибор-индикатор, пользуясь соответствующим потенциометром. [c.472]


    Существуют внутренний и внешний фотоэффекты. Внутренний фотоэффект сопровождается изменением или подвижности, или концентрации носителей заряда в диэлектриках и полупроводниках и положен в основу действия вентильных фотоэлементов и фотосопротивлений. Внешний фотоэффект сопровождается эмиссией электронов с поверхности материала, из которого изготовлен фотокатод фотоэлемента. Приложение напряжения и облучение фотокатода вызывает появление в цепи тока, который прямо пропорционален интенсивности света при определенных ее значениях. Характеристики некоторых типов фотоэлементов приведены в табл. И. [c.145]

    Дать сравнительную оценку фотоэлементов с внешним, вентильным и внутренним фотоэффектом. [c.139]

    Рнс. 2.3. Схема включения фотоэлемента с внутренним фотоэффектом (селеновый фотоэлемент)  [c.42]

    Под влиянием многих внешних факторов, в частности, под влиянием освещения электроны могут выходить через поверхность металла или полупроводника в окружающую среду. Такое явление носит название внешнего фотоэффекта, а приборы, основанные на его использовании, называются фотоэлементами. [c.167]

    Регистрацию излучения также нельзя вести методами, используемыми в видимой н ультрафиолетовой области, т. е. с помощью фотопластинок или фотоэлементов. Энергия квантов ИК-излучения слишком мала, чтобы вызвать какие-либо фотохимические реакции, лежащие в основе фотографического процесса, или вызывать фотоэффект (выбивать электрон из кристаллической решетки металла), используемый в фотоэлементах и фотоумножителях Поэтому регистрация излучения ведется с помощью термоэлементов, регистрирующих разогрев, возникающий при попадании на термоэлемент, и поглощении ими квантов инфракрасного излучения. [c.155]

    Примером использования явления фотоэффекта для регистрации излучения, является работа простого фотоэлемента (рис. 2.6). [c.26]

    Широко используют фотоэлементы, основанные на фотоэффекте. Падающий на приемник свет дает на выходе электрический сигнал, величина которого зависит от интенсивности светового потока. Величина электрического сигнала обычно очень мала и его можно измерить или зарегистрировать только после усиления. Применение радиотехнических методов для усиления электрического сигнала исключает потерю времени на фотометрирование, что обеспечивает очень высокую скорость измерения фотоэлектрическим методом. По скорости измерения этот метод часто превосходит даже визуальный, не говоря уже [c.187]

    Фотоэлементы. Из электрических приемников света наибольшее распространение получили вакуумные фотоэлементы, в которых используется внепший фотоэффект — эмиссия электронов с поверхности металла при его освещении. [c.187]

    Вакуумные фотоэлементы и фотоумножители основаны на внешнем фотоэффекте. Поэтому границу чувствительности нельзя продвинуть достаточно далеко в сторону длинных волн, так как работу выхода электронов не удается достаточно сильно уменьшить. Легче осу- [c.189]

    Характеристики фотоэлементов с внешним фотоэффектом мало зависят от температуры, поэтому они могут быть использованы без термостатирования. К недостатку этих фотоэлементов относится их утомляемость, выражающаяся в уменьшении чувствительности при длительной работе. Величина фототока в данных фотоэлементах может составлять доли микроампера, поэтому требуется дополнительное его усиление. При этом усилитель фототока должен обладать большим входным сопротивлением, так как внутреннее сопротивление фотоэлементов составляет несколько сотен мегомов. [c.242]

    Из фотоэлементов с внешним фотоэффектом наиболее распространены сурьмяно-цезиевые и кислородно-цезиевые. Первые имеют максимум чувствительности в области 430 нм и используются для работы в ультрафиолетовой и видимой областях спектра. Вторые являются газонаполненными и имеют два максимума чувствительности (см. рис. 75) один в УФ-области, около 350 нм, второй в близкой ИК-области, около 800 нм. Минимум чувствительности лежит в области 500 нм. Поэтому кислородно-цезиевые фотоэлементы используют обычно для работы в ближней ИК-области. [c.242]

    Применение щелочных металлов для изготовления фотокатодов и для других целей. Из щелочных металлов готовят катоды вакуумных и газонаполненных (инертным газом) фотоэлементов с внешним фотоэффектом (рис. [c.273]

    Рнс. 87. Схема фотоэлемента с внешним фотоэффектом [c.273]

    Фотоэлектрические приемники делят на приемники с внутренним фотоэффектом (фотосопротивления, фотодиоды, фототриоды) и с внещним фотоэффектом — фотоэлементы, электронно-оптические преобразователи, фотоэлектронные умножители, ночные телевизионные трубки. [c.106]

    Размер сканирующего элемента соизмерим или даже меньше размера проекции микрообъекта. Данный метод позволяет определить не только количество частиц и их размеры, но даже, если это необходимо, получить данные об их внутренней структуре. Разрешающая способность сканирующего микроскопа определяется как разрешающей способностью оптической системы (микроскопа), так и разрешающей способностью системы сканирования и блока обработки информации. Последние два условия объясняются конечными размерами сканирующего элемента и ограниченной полосой пропускания радиоканала в блоке обработки информации. В качестве источника света в микроскопе широко используют лампы накаливания, газоразрядные источники света, а в последнее время — лазеры. Светоприемники, используемые в сканирующих микроскопах, можно разделить на два класса использующие внешний фотоэффект (фотоэлементы, фотоумножители и т. д.) и использующие внутренний фотоэффект (фотосопротивления, видиконы). [c.205]


    Принцип действия фотоэлектрических детекторов основан на фотоэффекте. В видимой и ультрафиолетовой областях спектра в основном применяются детекторы с виешпим фотоэффектом фотоэлементы, фотоэлектронные умно/Кители, газонанолненные фотоэлементы (счетчики фотонов) реже — детекторы с внутренним фотоэффектом полупроводниковые фото и фотонараметрические диоды. [c.74]

    Детекторы. Для детектирования излучения применяют устройства, основанные на явлении фотоэффекта, - фотоэлементы. Для приема сигнала в видимой и УФ-областях обычно используют сурьмяноцезиевый (180 - 650 нм) и кислородно-цезиевый (600 - 1100 нм) фотоэлементы, а также фотоумножители. Если интенсивность падающего потока невелика, фиксировать импульсы от отдельных фотонов можно с помощью специальных электронных устройств - счетчиков фотонов. [c.8]

    Для работы в широком интервале спектра в приборах используют в качестве детекторов два фотоэлемента с внешним фотоэффектом (что требует предварительной компенсации темпового тока ) сурь-мяно-цезиевый для работы в области 185—650 нм и кислородно-цезиевый — в области 600—1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим, указана в аттестате прибора. [c.79]

    Для определения оптической плотности применяют фотоколориметры двух типов визуальные и фотоэлектрические. В последних в видимой области света применяют, главным образом, селеновые фотоэлементы (наиболее чувствительные при к = 680 нм) — с внутренним фотоэффектом (см. стр. 270) или, реже, сурьмяно-цезиевые (А, = 480 нм)—с внешним фотоэффектом. Наибольшей точностью отличаются дифференциальные фотоэлектрические приборы, основанные на уравнипанци интенсивности двух световых пучков с номощьво щелевой диафрагмы. [c.177]

    В каких фотометрических приборах применяют следующие приемники света а) глаз человека б) фотоэлементы с внещним фотоэффектом в) фотоэлементы с вентильным фотоэффектом г) термоэлементы. [c.139]

    Приемники излучения. Подразделяются на тепловые, обладающие высокой инерционностью, и фотоэлектрические — практически безынерционные. В УФ и видимой областях спектра абсорбционные измерения проводят с помощью фотоэлементов, имеющих внешний фотоэффект (вакуумные или газонаполненные фотоэлементы и фотоумножители). В ИК области спектра в качестве приемника применяют фотоэлементы с внутренним фотоэффектом — фогосо-противления, балометры (приемники радиации, принцип действия которых основан на зависимости сопротивления металла или полупроводника от температуры), термоэлементы и оптико-акустические приемники. [c.55]

    Действие фотоэлементов с запирающим слоем заключается в том, что световой поток, падающий на поверхность полупроводника, нанесенного на железную пластинку и обладающего односторонней проводимостью, возбуждает на ней движение электронов, которые не могут проникнуть в нижний слой (фронтальный фотоэффект). Если соединить верхний и нижний слои каким-либо проводником через гальванометр, можно измерить фототек, появляющийся во внешней цепи. Вентильные фотоэлементы обладают некоторым преимуществом перед фотоэлементами с внешним фотоэффектом, так как не требует дополнительных источников питания и имеют невысокое внутреннеее сопротивление, что позволяет непосредственно подключать к ним измерительный прибор. При непосредственном включении в цепь вентильного фотоэлемента измерительного прибора необходимо, чтобы последний обладал малым внутренним сопротивлением. Из вентильных фотоэлементов наибольшее распространение получил селеновый фотоэлемент [4]. [c.241]

    Фотоэлементы с внешним фотоэффектом представляют собой эвакуированный или газонаполненный баллон с двумя электродами. При этом катод является светочувствительным. Выбитые из светочувствительного катода электроны устремляются к аноду, в результате чего во нешней цепи возникает электрический ток. Спектральная [c.241]

    Особый класс полупроводниковых фотоэлементов с запирающим слоем, работающих на основе внутреннего фотоэффекта, не требует питания током от внешнего источлика, так как в них создается фото-электродвижущая сила при освещении. Фотоэлементы широко используются в автоматике, сигнализации, звуковом кино, изготовлении солнечных батарей и т.д. Цезий используется также для активации термоэлектронной эмиссии с вольфрамовых катодов электронных ламп. Если работа выхода с поверхности чистого вольфрама порядка 4,5 эв, то с поверхности вольфрама, активированного напыленной пленкой цезия, она снижается до 1,4 эв. Ток эмиссии при заданной температуре может возрасти на 10 порядков и больше. [c.274]


Смотреть страницы где упоминается термин Фотоэффект и фотоэлементы: [c.737]    [c.345]    [c.74]    [c.42]    [c.241]    [c.241]   
Смотреть главы в:

Основы физико-химических методов анализа -> Фотоэффект и фотоэлементы




ПОИСК





Смотрите так же термины и статьи:

Фотоэлемент

Фотоэффект



© 2025 chem21.info Реклама на сайте