Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссия термоэлектронная

    МЕТАЛЛИЧЕСКАЯ СВЯЗЬ — один из видов химической связи — связь ионов металла со свободными обобществленными внешними электронами. М. с. обусловливает характерные свойства металлов блеск, пластичность, высокие электро- и теплопроводность, положительный температурный коэффициент электросопротивления, термоэлектронную эмиссию и др. [c.159]


    Катализ первого класса, сокращенно называемый электронным катализом , осуществляется на твердых телах — проводниках электрического тока (металлах и полупроводниках). Эти тела обладают рядом общих физико-химических свойств, связанных с наличием в них подвижных электронов. Для тел-проводников характерна электропроводность, окраска (т. е. заметное поглощение света в видимой области спектра), термоэлектронная эмиссия и внешний фотоэффект. К этому классу относятся каталитические реакции окисления, восстановления, гидрирования, дегидрирования, объединяемые в тип гемолитических. Все они сопровождаются разделением электронов в электронных парах молекул. Общий механизм действия катализатора сводится при этом к облегчению электронных переходов в реагирующих молекулах за счет собственных электронов катализатора. [c.13]

    Дуговой разряд отличается неустойчивостью. Одной из причин этого является непрерывное перемещение катодного пятна, которое собственно и обеспечивает термоэлектронную эмиссию, необходимую для поддержания разряда. Для устранения неустойчивости дуги в ее цепь включают большое балластное сопротивление 7 . Ток, текущий через дугу, по закону Ома равен [c.59]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]


    Эмиссионный электронный микроскоп. В эмиссионном микроскопе изображение объекта создается электронами, испускаемыми поверхностью самого объекта. Эмиссия электронов с поверхности образца инициируется нагреванием последнего (термоэлектронная эмиссия), бомбардировкой поверхности электронами или ионами (вторичная электронная эмиссия) и облучением фотонами (фотоэлектронная эмиссия). Испускаемые поверхностью электроны собирательной линзой (иммерсионным объективом) ускоряются и направляются на экран. Вследствие того что разные участки поверхности объекта имеют различную эмиссионную способность, на экране возникают участки неодинаковой яркости, что и является изображением реальной поверхности. На яркость изображения влияет также и рельеф поверхности. [c.155]

    При эффузионном (ЭФ) методе измерения работы выхода используется температурная зависимость равновесного давления электронного газа над эмиттером. Явление термоэмиссии можно рассматривать как испарение электронов из эмиттера, проводя аналогию с термическим испарением атомов или молекул. При этом для поддержания постоянной температуры эмиттера требуется приток тепла. Равновесие между эмиссией термоэлектронов и их конденсацией наступает при наличии над поверхностью эмиттера электронного газа определенной плотности, аналогичной плотности насыщенного пара при испарении атомов или молекул. Термодинамическое рассмотрение системы эмиттер—равновесный электронный газ дает возможность получить выражение (24). Это рассмотрение не содержит каких-либо предположений о свойствах электро- [c.16]

    Существуют несколько методов преобразования энергии радиоактивного распада в электрическую метод прямого сбора заряда преобразователи на р — га-переходах фотоэлектрическое преобразование метод, основанный на использовании явления вторичной эмиссии термоэлектронный и термоионный методы преобразования термоэлектрическое преобразование. [c.488]

    Изменение тока эмиссии термоэлектронного манометрического преобразователя ЛМ-2 при изменении напряжения питающей сети 220 в на 10% в течение 1 ч работы и при изменении давления в вакуумной системе в пределах измерения манометра не превышает 10% от номинального значения 5 ма. [c.165]

    Если он обращен отрицательной стороной наружу, то работа выхода электронов увеличивается. Если же внешняя часть слоя положительна, то работа выхода уменьшается. При хемосорбции значения КРП находятся в интервале от —1,5 В (для оксида углерода на железе) до +1,6 В (для кислорода на никеле) [210]. Поверхностные пленки ослабляют термоэлектронную эмиссию, повышая работу выхода электронов. Уже одноатомный слой постороннего вещества, нанесенный на поверхность, изменяет потенциал двойного слоя. При этом опреде- [c.185]

    Дуговой разряд можно питать и переменным током. Однако такой разряд не может существовать самостоятельно. При изменении направления тока электроды быстро остывают, термоэлектронная эмиссия прекращается, дуговой промежуток деионизуется и разряд гаснет. Поэтому для поддержания горения дуги переменного тока используют специальные поджигающие устройства дуговой промежуток пробивают высокочастотным импульсом высокого напряжения, но малой мощности (рис. 3.2). [c.60]

    Электрон является элементарной частицей, имеющей отрицательный электрический заряд е = 1,602-10-1 Кл, массу покоя = = 9,11-10-31 кг максимальный размер электрона около 10-1 м. Электрон обладает спиновым моментом количества движения. Электроны испускаются из тел вследствие явления термоэлектронной эмиссии и при радиоактивных превращениях. Плотность тока термоэлектронной эмиссии катодов зависит от температуры согласно закону Ричардсона- Дэшмана  [c.102]

    Степень связанности электрона в данном металле в известной степени характеризуется величиной работы выхода электрона, которая в настоящее время определяется экспериментально (табл. 13). Работой выхода электрона называется количество энергии, которое необходимо для выделения электрона из металла. Она определяется измерением наименьшей энергии электромагнитных колебаний, способных выделять электроны из данного металла (фотоэлектрический эффект), или измерением температуры, при которой начинается самопроизвольное выделение металлом электронов термоэлектронная эмиссия). Но измеряемая таким путем работа выхода электрона определяет количество энергии, необходимое для выделения электрона с поверхности металла, и не равна энергии связи электрона внутри металла. Работа выхода электрона не равна и потенциалу ионизации свободных атомов, а меньше него примерно на 2—5 эв (в частности, вследствие кинетической энергии, присущей электрону в металле). [c.136]

    Термоэлектронная эмиссия, ее применение. [c.165]

    Из-за высокого сопротивления воздуха в аналитическом промежутке при подаче на него напряжения дуга не загорится. Для поджига дуги аналитический промежуток следует активизировать. Это достигается кратковременным сведением электродов либо с помощью ТОКОВ ВЫСОКОЙ частоты, как в генераторе активизированной дуги переменного тока. Зажигание дуги и поддерживание ее горения происходят за счет термоэлектронной эмиссии с электродов. [c.661]

    Работу выхода электрона из металла обычно определяют при помощи различных методов с применением вакуумной техники. Так, например, прибегают к методам фотоэлектронной или термоэлектронной эмиссии. При определении [c.97]


    Работу выхода электрона из металла обычно определяют при помощи различных методов с применением вакуумной техники. Так, например, прибегают к методам фотоэлектронной или термоэлектронной эмиссии. При определении работы выхода электрона необходимо использовать очень чистые поверхности, так как иначе поверхностные скачки потенциалов в присутствии примесей, адсорбирующихся на металле, изменяются и измерения оказываются ошибочными. [c.99]

    Мерой связанности электрона в решетке металла служит определяемая экспериментально работа выхода электрона. Работой выхода электрона называется количество энергии, которое необходимо затратить для удаления электрона из металла. Эта величина может быть определена измерением наименьшей частоты (энергии) волн света, обеспечивающей выделение электронов из кристалла (фотоэлектрический эффект) или измерением минимальной температуры, при которой происходит выход электронов из металла (термоэлектронная эмиссия). Работа выхода электрона обычно на 2—5 эВ меньше энергии ионизации свободных атомов, так как включает кинетическую энергию электронов в кристалле. [c.183]

    Дуговой разряд создается при высоких давлениях газа, и обусловлен тем, что катод сильно разогревается, в результате чего возникает термоэлектронная эмиссия. [c.252]

    Развитие экспериментальных исследований, особенно в области физики, в конце XIX и начале XX в., привело к ряду важных открытий (например, открытие радиоактивности элемента), доказавших сложную природу атома и определивших дальнейшие пути изучения его внутреннего строения. Открытие явления радиоактивности подтвердило наличие в атомах более простых частиц и возможность превращения атомов одних элементов в атомы других. Был открыт электрон и связанный с ним ряд явлений, как, например, поток свободных электронов в вакууме, возбуждение рентгеновских лучей при торможении потока электронов, испускание электронов накаленными телами (термоэлектронная эмиссия), фотоэлектрический эффект, давление света и др. [c.10]

    На рис. 3.1 показана схема дуги постоянного тока. Зажженный разряд поддерживается за счет термоэлектронной эмиссии с поверхности раскаленного катода. Падение напряжения на электродах обычно составляет 30—70 В и зависит от многих факторов материала электрода, силы тока через дугу, дуговогО промежутка, состава и давления атмосферы. Максимальное падение напряжения наблюдается при использовании угольных электродов введение в дуговой разряд легко ионизующихся элементов снижает напряжение. В рабочем режиме сила тока, питающего дугу, изменяется от нескольких единиц до нескольких десятков ампер в зависимости от поставленной задачи. [c.34]

    Пробой облегчается в тех случаях, когда в воздушном промежутке уже имеются заряженные частицы. Так, если концы электродов разогреты и с них вследствие термоэлектронной эмиссии вылетают электроны, то для пробоя такого промежутка достаточно напряжение около 100 в. [c.57]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]

    Активизированная дуга переменного тока. Дуговой разряд переменного тока не может поддерживаться самостоятельно между металлическими электродами, так как направление тока меняется 100 раз в секунду (50 Гц). За такой промежуток времени металлические электроды успевают остыть, и термоэлектронная эмиссия при этом не происходит, а дуга гаснет и не загорается. Для восстановления дуги в начале каждого полупериода тока ее необходимо зажигать с помощью высокочастотного тока (рис. 30.8,6). [c.662]

    Если поверхность твердого тела находится в неравновесном энергетическом состоянии, то тоже имеет место эмиссия электронов. Неравномерность поверхности может быть вызвана внешним воздействием (нагреванием, облучением, приложенным электрическим полем, трением, механической обработкой, рекристаллизацией, химическими и фазовыми превращениями и др.). Эту эмиссию электронов в отличие от ранее известных (термоэлектронной, фотоэлектронной, автоэлектронной, рассмотренных в 3) обозначают обычно термином экзоэлектронная эмиссия , предложенным Крамерсом (1950 г.). Энергия экзоэлектрона невелика. [c.450]

    Впервые такая задача была поставлена Ф. Хундом в мае 1927 г. Он показал возможность существования энергетически равноценных ядерных конфигураций многоатомных молекул, причем время перехода из одной конфигурации в другую может, по его словам, иметь порядок от атомных до космических величин в зависимости от высоты барьера. Впоследствии аналогичные задачи рассматривались многими физиками в связи с разнообразными проблемами —А. Нордхей-мом (1927 г.) при изучении термоэлектронной эмиссии, Р. Оппенгеймером (1927 г.) при исследовании поведения атома водорода во внешнем электрическом поле и, наиболее известный пример, Г. Герни, Э. Кондоном и Г. А. Гамовым (1928 г.) в теории а-распада атомных ядер. [c.115]

    Для создания электронных пучков используют специальные электронные пушки с катодами в виде проволочной петли из вольфрама или сплава вольфрама с рением [14]. Плотность тока термоэлектронной эмиссии достигает 5 А/см2. В. игольчатых катодах к вершине петли прикрепляют иглу с радиусом кривизны менее 1 мкм, с поверхности которой в полях напряженностью 10 -10 В/см в результате электронной эмиссии плотность тока возрастает до 10 Л/рм2. В технологических установ1 ах с интенсивными (сильноточными) электронными потоками находят применение плазменные эмиттеры на основе тлеющих и дуговых разрядов [15]. В этих эмиттерах площадь и форма эмиссионной границы определяется свойствами плазмы и условиями токоотбо- [c.102]

    Как правило, все гетерогенные процессы в химической технологии для увеличения их скоростей проводят при максимальной иоверхности контакта фаз. Это значит, что системы в реакционных аппаратах находятся в состоянии суспензий, паст, пульи, эмульсий, иен, порошков, туманов, пылей и т. д. Несмотря на то, что толщина поверхностных слоев не превышает нескольких молекул, их роль во многих случаях не менее важна, чем объемных фаз, например, в процессах массо-передачн (адсорбция, экстракция, сушка, испарение и др.), термоэлектронной эмиссии, смазочном действии, адгезии. [c.15]

    Различают три возможных механизма образования двойного электрического слоя. Согласно одному из ннх двойной электрический слон образуется в результате перехода нонов или электронов из одной фазы в другую (поверхностная ионизация). Например, с поверхности металла в газовую фазу переходят электроны, образуя со стороны газовой фазы электронное облако. Количественной характеристикой такого перехода может слуя ить работа выхода электрона. Интенсивность электронного потока увеличивается с повышением температуры (термоэлектронная эмиссия). В результате поверхность металла приобретает положительный заряд, а газовая фаза — отрицательный. Возникший электрический потен-инал на границе раздела фаз препятствует дальнейшему переходу электронов — наступает равновесие, при котором положительный заряд поверхности металла скомпенсирован отрицательным зарядом, созданным электронами в газовой фазе, т. е. формируется двойной электрический слой. [c.45]

    Рассмотрим процессы, происходящие между пластинками меди и цинка в вакууме. За счет термоэлектронной эмиссии, имеющей л1есто при любых температурах, над обоими металлами наблюдается некоторое давление электронного газа. У цинка работа выхода электронов меньше, и" поэтому [c.382]

    В периодической системе элементов к металлам относят элементы I, II и III групп, кроме В, элементы IV группы, кроме С и 51, V группы, кроме Ы, Р, Аз, элементы побочных подгрупп VI, VII, VIII группы, а также лантаноиды и актиноиды, т. е. в периодической системе подавляющее большинство элементов (около 80%) —металлы. Металлы в реакциях окисления — восстановления проявляют восстановительные свойства, отдавая свои электроны, переходят в положительно заряженные ионы. Отрицательно заряженных ионов они не образуют. Отрыв наружных электронов у атомов металлов может быть осуществлен не только в ходе химических реакций, но и в процессе термоэлектронной эмиссии — испускания электронов нагретыми телами в результате теплового возбуждения электронов в этих телах — и фотоэлектрического эффекта (или фотоэффекта), когда под действием освещения происходит выход электронов из металлов. Металлы при этом заряжаются положительно. [c.85]

    Если термоэлектронная эмиссия мала, то применяют специальное приспособление, которое дополнительно ионизует междуэлект-родный промежуток в определенный период паузы тока. Это приспособление называется активизатором, а сама дуга — активизированной дугой переменного тока. Возможность изменения момента активации (пробой промежутка более высоким по сравнению с горением дуги напряжением) и величины междуэлектрод-ного промежутка делает такую дугу источником света с широким диапазоном варьируемых условий возбуждепия. [c.45]

    Металлы в Периодической системе. Из 106 элементов Периодической системы более восьмидесяти относится к металлам. По многим физическим, химическим, и механическим свойствам металлы существенно отличаются от неметаллов. Для них характерны высокая электрическая проводимость, теплопрозодность, металлический блеск, твердость, ковкость, способность к пластической деформации, термоэлектронной эмиссии и т. п. Специфичность физико-химических и механических свойств металлов объясняется электронной структурой атомов, числом электронов в наружных электронных слоях (как правило, это число электронов значительно меньше, чем число внешних электронов в а"Омах неметаллов), своеобразным типом химической связи и кристаллическим строением. [c.366]

    Плотность тока электронов, уходящих из металла при его нагреве термоэлектронная эмиссия, которую впервые наблюдал Эдисон), описывается уравнением Ричардсона — Дешмена  [c.265]

    Особый класс полупроводниковых фотоэлементов с запирающим слоем, работающих на основе внутреннего фотоэффекта, не требует питания током от внешнего источлика, так как в них создается фото-электродвижущая сила при освещении. Фотоэлементы широко используются в автоматике, сигнализации, звуковом кино, изготовлении солнечных батарей и т.д. Цезий используется также для активации термоэлектронной эмиссии с вольфрамовых катодов электронных ламп. Если работа выхода с поверхности чистого вольфрама порядка 4,5 эв, то с поверхности вольфрама, активированного напыленной пленкой цезия, она снижается до 1,4 эв. Ток эмиссии при заданной температуре может возрасти на 10 порядков и больше. [c.274]

    Металлы обладают высокой электро- и теплопроводностью, положительным температурным коэффициентом электросопротивления, термоэлектронной эмиссией, магнитными свойствами п пластичностью, что обусловлено общн.м свойством — низкой энергией отрыва валентных электронов. Конденсированное состояние металла характеризуется наличием свободных электронов, перемещающихся по всему объему металла. [c.218]

    При л = О / (0) = л 12. Легко проверить, что при со = О и а = 1 (при этом X = (—Йсоо/ г) < 0) из формулы (733) сразу получаем уравнение Ричардсона для термоэлектронной эмиссии (см. гл. IX). [c.414]


Смотреть страницы где упоминается термин Эмиссия термоэлектронная: [c.63]    [c.164]    [c.169]    [c.169]    [c.518]    [c.112]    [c.117]    [c.230]    [c.45]   
Физика и химия твердого состояния (1978) -- [ c.452 ]

Краткий курс физической химии Изд5 (1978) -- [ c.135 ]

Курс общей химии (1964) -- [ c.29 ]

Электроника (1954) -- [ c.20 , c.36 , c.82 ]

Электрические явления в газах и вакууме (1950) -- [ c.22 , c.77 , c.105 , c.410 , c.453 , c.456 , c.461 ]

Физическая и коллоидная химия (1960) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Вывод формулы термоэлектронной эмиссии на основе распределения по скоростям Ферми и волновой механики

Зависимость тока термоэлектронной эмиссии от температуры катода

Ионизационный детектор с термоэлектронной эмиссией

Исследование адсорбции цезия на вольфраме методом термоэлектронной эмиссии

Константы термоэлектронной эмиссии

Метод термоэлектронной эмиссии

Объясните термоэлектронной эмиссии оксидных катодов на основе зональной теории полупроводников

Определение работы выхода и константы термоэлектронной эмиссии

Распределение скоростей в потоке электронов вне металла при термоэлектронной эмиссии

Связь термоэлектронной эмиссии с другими явлениями

Термоэлектронная и автоэлектронная (холодная) эмиссия

Термоэлектронная и холодная эмиссии

Термоэлектронная эмиссия органических кристаллов

Формула термоэлектронной эмиссии

ШЛ Уравнение термоэлектронной эмиссии чистых металлов

Эмиссия

Эмиссия Эмиссия



© 2025 chem21.info Реклама на сайте