Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количественный закон люминесценции

    КОЛИЧЕСТВЕННЫЙ ЗАКОН ЛЮМИНЕСЦЕНЦИИ [c.623]

    Импульсные методы позволяют изучать кинетику при любом характере затухания люминесценции. В фазово-модуляционном методе необходимо заранее предполагать вид закона затухания люминесценции, и экспериментально определяют лишь количественные значения параметров. Проверка правильности предполагаемого закона требует особого исследования. [c.208]


    Три перечисленных участка кривой существуют в затухании всех образцов виллемита и большинства других активированных марганцем силикатов. Они указывают на сложность процесса, который не поддаётся простому аналитическому выражению. Упомянутые выше работы по затуханию люминесценции при возбуждении светом указывают причины, по которым ход затухания не может быть охвачен одним уравнением. С достаточной степенью точности им могут быть выражены только отдельные участки кривой. Совпадение закона затухания в этих участках необязательно и даже противоречит теоретическим предпосылкам. Три перечисленных выше участка кривой нельзя, конечно, рассматривать как самостоятельные этапы затухания. Процессы в последнем идут параллельно, а не последовательно на отдельных отрезках времени, в зависимости от особенностей наложения, получают количественное преобладание те или другие виды хаотических и рекомбинационных процессов. [c.179]

    Во-первых, флуориметрия и фосфориметрия являются в общем более чувствительными, чем абсорбционные методы. Это объясняется тем, что в люминесцентном методе можно непосредственно измерять мощность испускаемого излучения. В отличие от этого в абсорбционных методах необходимо определять разность между двумя большими уровнями излучения, мощности падающего Ро и пропущенного Р излучения. Поскольку всегда легче измерять малый сигнал без всякого фонового сигнала, чем измерять разность двух больших сигналов, флуориметрия и фосфориметрия обеспечивают большую чувствительность,, чем абсорбционная спектрофотометрия. В то время как для абсорбционной спектрофотометрии зависимость между поглощением и концентрацией линейна согласно закону Бера часто в 10—100-кратном интервале концентраций, в то же время для флуориметрии и фосфориметрии обычно зависимость между мощностью люминесценции и концентрацией линейна в интервале трех или четырех порядков значений концентрации. Хотя этот более широкий линейный диапазон не обязательно нужен для количественного анализа, он часто имеет большое практическое значение и требует меньше точек на калибровочном графике. [c.659]

    Источниками возбуждения могут быть свет (фотолюминесценция), химические реакции (хемилюминесценция), рентгеновские лучи (рентгенолюминесценция) и др. (табл, 1П.13). В экологической аналитической химии чаще всего используют анализ, основанный на фотолюминесценции исследуемого вещества или хемилюминесценции. В первом случае используют фотолюминесценцию, возбуждаемую УФ-излучением, источником которого служат ртутно-кварцевые или ксеноновые лампы и лазеры. Регистрируют люминесценцию фотоэлектрически (с помощью спектрофотометра — флуориметра). Качественный анализ (по спектру люминесценции) особенно часто используют для обнаружения полициклических ароматических углеводородов (ПАУ). Количественный анализ основан на зависимости интенсивности люминесценции от количества лю-минесцирующего вещества (см. закон Бугера—Ламберта—Бера, раздел 3.1). [c.276]


    Общеизвестно, что солнечный свет облегчает протекание химических реакций примерами служат выцветание тканей и образование зеленой окраски растений. Можно сказать, что и снабжение пищей всего животного мира в конечном счете зависит от фотохимических реакций, осуществляющихся в растениях под влиянием солнечного света. Количественное изучение фотохимических реакций началось после того, как Гроттус сформулировал в 1817 г. первый закон фотохимии Фотохимическое превращение вызывается только тем светом, который поглощается системой . Второй закон фотохимии был впервые сформулирован Штарком (1908 г.), а затем Эйнштейном (1912 г.) На одну молекулу вещества, участвующего в фотохимической реакции, поглощается один квант света . Этот закон был выведен для самых простых реакций и, строго говоря, применим только к первичному фотохимическому процессу, т. е. образованию в акте поглощения возбужденной частицы, поскольку некоторые возбужденные молекулы могут тем или иным путем возвращаться в начальное состояние, например путем испускания люминесценции. Кроме того, даже если в реакцию вступают все молекулы, первичные продукты часто оказываются неустойчивыми и подвергаются дальнейшим превращениям. В исследованиях фотохимических реакций важным понятием является квантовая эффективность, впервые введенная Эйнштейном. При определении этой величины можно взять за основу либо число прореагировавших молекул исходного реагента, либо число молекул определенного продукта (Л), получившихся в реакции, в расчете на [c.14]

    Приведённая осциллограмма показывает, что описанный осциллографи-ческий метод позволяет изучать процессы затухания и нарастания свечения лишь качественно. В самом деле, при визуальном исследовании затухания свечения обычно удаётся наблюдать изменение свечения в сотни раз, а иногда и в десятки тысяч раз большой диапазон измерений крайне существен для анализа кривых затухания, так как ход затухания на разных его стадиях нередко подчиняется различным закономерностям. На осциллограммах можно проследить ослабление свечения лишь в небольшое число раз, и далёкие стадии затухания обычно совершенно выпадают из анализа. Весьма существенное усовершенствование осциллографического метода, в значительной мере устраняющее этот недостаток, предложено Н. А. Толстым и П. П. Феофиловым [499]. Их приём особенно пригоден для исследования процессов, затухающих и нарастающих по экспоненте он позволяет точно и быстро, в течение нескольких минут, определять среднюю продолжительность простого экспоненциального процесса или устанавливать существование отступлений от него. Несовершенство обычной осциллограммы связано с тем, что на ней расстояния по оси абсцисс пропорциональны времени, а изменение яркости свечений идёт по экспоненте (или другому сложному закону). Вследствие этого или далёкие стадии затухания налагаются на начальные стадии возбул дения, образуя сильный фон (рис. 27, б), или начальные стадии столь сильно сжимаются, что их нельзя количественно анализировать. Н. А. Толстой и П. П. Феофилов предложили заменить у горизонтальной развёртки линейную зависимость от времени экспоненциальной зависимостью. Этого удаётся достигнуть с помощью небольшого усложнения схемы (рис. 28а). На горизонтальную развёртку осциллографа (контакты Н) накладывается напряжение от контура, включающего ёмкость С и сопротивление Л контур питается фототоком второго фотоумножителя Рйг. Последний освещается лампой накаливания 2, свет которой прерывается с помощью диска В2 с той же частотой и фазой, как и свет, возбунодающий люминесценцию. Диск Вц укреплён на общей оси с диском В1. При этом устройстве схемы отклонение луча под действием электрического поля в горизонтальном направлении будет следовать закону  [c.85]


Смотреть страницы где упоминается термин Количественный закон люминесценции: [c.276]   
Смотреть главы в:

Химическое разделение и измерение теория и практика аналитической химии -> Количественный закон люминесценции




ПОИСК





Смотрите так же термины и статьи:

Законы количественные

Люминесценция



© 2024 chem21.info Реклама на сайте