Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм химических превращений нри термическом крекинге индивидуальных углеводородов

    Механизм химических превращений при термическом крекинге индивидуальных углеводородов [c.203]

    При современном уровне развития термических процессов сырье для них может быть весьма разнообразным от простейших газообразных углеводородов до тяжелых высокомолекулярных остатков. Поэтому для исследователя и инженера-нефтяника представляет интерес поведение при высоких температурах самых различных видов нефтяного и газового сырья. Термический крекинг изучают на индивидуальных углеводородах, а также на нефтяных фракциях и остатках. Исследование крекинга углеводородов позволяет получить более строгие кинетические данные и изучить механизм реакции крекинга. Эта задача облегчается практической возможностью отделить продукты реакции от непрореагировавшего сырья. Определить глубину превращения при крекинге широких нефтяных фракций затруднительно, так как сложность химического состава сырья не позволяет идентифицировать его непревращенную часть. Так, п )и крекинге керосина, выкипающего в пределах 200-—300° С, продуктами крекинга являются газ и нее фракции, выкипаюн ие до 200 и выше ЗСО°С. За непревращенное сырье нри1шмают содержащуюся в продуктах крекинга фракцию 200—300° С, хотя по качеству она всегда, в большей или меньшей степени, отличается от исходного сырья плотность ее выше, содержание ароматических и неиредельных углеводородов, а также смол больше и т. д. Однако это обстоятельство пе снижает ценности исследований нефтяного сырья широкого фракционного состава, потому что позволяет изучить такой необходимый показатель, как относительная скорость реакцип крекинга при различных температурах, т. е. скорость образования бензина, газа, кокса и других продуктов. Этот показатель может быть использован при проектировании и эксплуатации промышленных установок. [c.20]


    В результате превраш,ений, ведуш,их к образованию изопарафиновых и ароматических углеводородов, бензин каталитического крекинга имеет более высокое октановое число (78 по М.М. и 82-95 по И.М.) по сравнению с бензином термического крекинга, протекающего по свободнорадикальному механизму. Если химизм и механизм превращений индивидуальных углеводородов изучен достаточно подробно, то при переработке смесей нефтепродуктов широкого фракционного состава построение химических схем процесса представляет очень трудную задачу. На данном этапе возможно лишь рассмотрение схемы, которая учитывает основные направления и результирующий эффект деструктивной переработки тяжелых нефтяных дистиллятов. За компоненты обьшно принимают фракции, разделяющиеся по температурам кипения газ, бензин, легкий газойль, тяжелый газойль, остаток и т.п. Главным недостатком такой схемы является малая чувствительность к химическому составу входящих в нее углеводородов. Это объясняется тем, что вторичные превращения, связанные с перестройкой углеводородного состава продуктов и следующих за первичным актом термокаталитического разложения сырья, практически мало изменяют температурные пределы выкипания продуктов. Поэтому применяемая обычно схема процесса отражает фактически лишь этап распада молекул или их осколков, и наблюдаемая кинетика процесса - это кинетика разрыва углерод-углеродных связей. И хотя при построении кинетической модели используют схемы и реакции, протекающие по первому порядку, в целом скорость процесса превращения промышленного сырья, являющегося смесью углеводородов, является величиной, характеризующей сумму различных скоростей реакций отдельных групп и углеводородных соединений, протекающих для каждого из соединений по первому порядку. [c.34]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]



Смотреть главы в:

Химия нефти и искусственного жидкого топлива -> Механизм химических превращений нри термическом крекинге индивидуальных углеводородов




ПОИСК





Смотрите так же термины и статьи:

Крекинг термический

Крекинг углеводородов

Превращения химические

Химическая механизм



© 2025 chem21.info Реклама на сайте