Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции уравнения различных порядков

    Разные реакции имеют различные зависимости их скорости от концентраций реагирующих компонентов и подразделяются по порядку реакции. Порядок реакции вытекает из кинетического уравнения, выражающего зависимость скорости от концентрации реагентов  [c.100]

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    С изменением условий проведения каталитической реакции ее порядок, энергия активации и предэкспоненциальный множитель (если константа скорости может быть представлена в форме уравнения Аррениуса кт = могут сильно изменяться, поэтому активность различных катализаторов в данной реакции можно сравнивать только непосредственно по скорости реакции в данных условиях. [c.135]

    Рассчитывают константу скорости реакции, проводят простейшую оценку погрешности в определении константы скорости и определяют порядок реакции. Полученные экспериментальные данные подставляют в кинетические уравнения реакций различных порядков. Порядок реакции соответствует тому уравнению, в котором величина константы скорости постоянна. На основании проведенных вычислений находят, что данная реакция является реакцией первого порядка. Для расчетов предлагается вариант программы, написанный на языке РХ 1 и РОЯТ НАМ - 4 (см. приложения 1,2). [c.41]

    Оба эти метода дают возможность выявить основные различия в активности, связанные со значительными изменениями какого-либо одного параметра (химического состава, структурных свойств и т. д.), если остальные параметры остаются без изменения. Вместе с тем сложной взаимосвязи между процессами сорбции, диффузии и, химической реакцией они не отражают. Более надежным способом, позволяющим избежать неправильных выводов при сравнении катализаторов с нестабильной во времени активностью, является экстраполяция конверсии на нулевое время. Этот метод обычно используют в тех случаях, когда реакция проводится в дифференциальном, а не интегральном реакторе. Однако, как правило, применяется он значительно реже, хотя известно, к какой путанице может привести, например, определение влияния соотношения Si/Al на каталитические свойства деалюминированного морденита, если однозначный способ определения активности отсутствует. Еще меньше можно назвать работ, в которых были проведены кинетические определения зависимости констант скоростей от скорости подачи сырья или парциальных давлений исходных компонентов -й продуктов реакции. Между тем, сравнивая активности, часто дйпускают, что реакции имеют первый порядок, и пересчитывают измеренные степени превращения в константы скорости. Принято также определять температурную зависимость активности и подставлять данные по конверсии при различных температурах в уравнение Аррениуса. Такой расчет будет правильным, если используются только начальные конверсии, потому что в этом случае можно избежать неточностей из-за разной скорости дезактивации катализаторов при различных температурах. Но даже и тогда расчет энергии активации совсем не обязательно приведет к Д,, характерной для данной химической реакции, которая протекает на определенном типе активных центров. Полученная величина Еа может в значительной степени отражать ограничения, связанные с диффузией и массопередачей. [c.56]


    Но кинетический анализ показал, что кажущаяся константа скорости убывает по мере протекания реакции, что свидетельствует о самоторможении процесса крекинга. Порядок же реакции монотонно изменяется от 1,36 при 625 °С и небольших глубинах превращения до 0,96 при 825 °С и больших глубинах превращения пропана. Ввиду заметного самоторможения константы скорости рассчитывали для различных интервалов глубин превращения как с помощью кинетических уравнений интегрального типа, так и путем графического дифференцирования кинетических кривых. [c.255]

    Для этого экспериментальным путем определяют значение "кз в уравнении (4), зная которое, по уравнению (З) определяют значение Я6. Имея ряд значений эе, соот -ветствующих различным концентрациям поглощаемого компонента и активной части абсорбента, можно определить значение константы скорости реакции и ее порядок по каждому из компонентов. [c.168]

    Это уравнение прямой линии. Наклон прямой tg а укажет нам порядок реакции по I2 — величину у. Повторим теперь эту же операцию измерения скоростей реакции прн различных [СО] и постоянной [ ig]. Построив график в си- [c.26]

    Порядком химической реакции называется сумма показателей степеней при концентрациях в кинетическом уравнении данной реакции. 5.2. Константа скорости реакции— размерная величина, ее размерность зависит от порядка реакции. 5.3. Для определения концентрационного (истинного) порядка реакции по данному компоненту необходимо поставить несколько опытов с различными исходными концентрациями данного компонента (остальные компоненты берутся в избытке). Определить графически начальную скорость реакции при различных исходных концентрациях и на основании этих данных построить график 1 г)=/(1 С). Тангенс угла наклона полученной прямой к оси С даст концентрационный порядок реакции по данному компоненту. 5.4. > 2- 5.5. 0,12 мVмoль . 5.6. 2,0-10- с. 6.1. 1 Со [c.109]

    Предложите различные методы измерения скорости этой реакции. В табл. 45 приведены сведения о скорости реакции. Выведите кинетическое уравнение реакции. Каковы общий порядок реакции и порядки по реагирующим веществам Вычислите скорость реакции при концентрациях а) no=< 02=0,012 моль/л  [c.132]

    Примечание. Сравнивая уравнения (г) и (е), можно видеть, что если различные движущие силы не являются линейными функциями параметра системы, то выражения для суммарной скорости процесса представляют собой не простые соотношения. Эта особенность влияет на методику нахождения скоростей реакций для гетерогенных систем. Когда химическая реакция протекает по первому порядку, общее выражение скорости, учитывающее массоперенос, может быть выведено без затруднений. Однако, если реакция имеет не первый порядок и необходимо получить уравнение скорости сложного процесса, то обычно выбирают такие экспериментальные условия, при которых химическую стадию без большой ошибки можно рассматривать, как реакцию первого порядка. [c.326]

    Порядок реакции определяют экспериментально и теоретически обосновывают, почему данная реакция имеет именно такой порядок. Для этого выясняют механизм реакции. Чаще всего порядок реакции (а и Р) не совпадает со стехиометрическими коэффициентами реакции (а,Ь), которые отражают молекулярность реакции. Но, если стехиометрическое уравнение правильно отражает механизм реакции, то порядок реакции совпадает с ее молекулярностью. При этом реакция первого порядка является мономолекулярной, второго — бимолекулярной и т. д. Скорости превращения различных компонентов, участвующих в реакции, связаны друг с другом стехиометрическими коэффициентами. Например, если стехиометрическое уравнение реакции имеет вид А + В 20, то соотношение между скоростями превращения компонентов запишется так [c.75]

    Значение сц можно определить экспериментально для различных моментов времени и если подсчитанная величина константы скорости реакции к в уравнении (VI,4) остается практически постоянной, то реакция имеет первый порядок. [c.98]

    В зависимости от порядка реакции кинетические уравнения для расчета скорости различны. Порядок реакции является чисто эмпирической величиной. Он или равен молекулярности реакции (если реакция элементарна) или, в большинстве случаев, меньше ее. Расхождение между порядком реакции и ее молекулярностью может быть вызвано р а 3 л и ч н ы м и п р и ч и и а м и. [c.326]

    Подтверждено различными методами влияние процессов переноса на гидрогенолиз этана при очистке природного газа от гомологов метана. Получено эмпирическое уравнение зависимости коэффициента массопередачи для этана от температуры, давления и массовой скорости потока. Определены кажущийся порядок реакции и эффективная константа скорости. Рассчитаны константа скорости во внутридиффузионной области, эффективный коэффициент диффузии, константа скорости в кинетической области и степень использования внутренней поверхности никель-хромового катализатора. Библиогр. 10, рис. 4. [c.184]


    Задание. Покажите, что мономолекулярная реакция может иметь различный порядок в зависимости от концентрации. Примените метод стационарных концентраций, считая, что скорость образования активных молекул равна сумме скоростей их расходования. Запишите условие стационарности в виде уравнения. Определите концентрацию активных молекул и подставьте в выражение скорости образования продуктов. Проанализируйте полученное выражение с точки зрения влияния концентрации на порядок реакции. [c.284]

    Данные по скорости реакции часто нужны для сравнения активностей ряда различных образцов катализаторов. Для достижения этой цели нет необходимости знать порядок реакции или даже иметь эмпирическое уравнение, связывающее степень превращения со скоростью подачи сырья. Необходимо лишь располагать кривой зависимости степени превращения от скорости подачи сырья для стандартного катализатора этой серии, построенной на основании экснериментальны х данных. Экспериментальное определение степени превращения при одинаковой скорости подачи сырья в случае другого катализатора при тех же прочих условиях дает возмон ность определить активность этого катализатора по отношению к активности стандартного катализатора, ибо как с теоретической, так и с экспериментальной точек зрения активности пропорциональны скоростям подачи сырья, требуемым для достижения данной степени превращения при условии, что кинетика реакции та же самая. Однако такое сравнение совершенно не учитывает различный характер влияния отложений кокса. [c.444]

    Разработайте количественную методику исследования по всем вопросам, изложенным в предыдущем опыте. Советуем Вам воспользоваться прибором, изображенным на рис., 68 и описанием работы с ним на с. 110. Так, взаимодействие металла с кислотой — гетерогенный процесс, т. е. скорость зависит не только от концентрации кислоты, но и площади поверхности металла. Как следует поступить, чтобы площадь поверхности была постоянной Измерьте скорость растворения (по объему выделяющегося водорода) в растворах соляной кислоты различной концентрации, например 1 М 0,5 М, 0,25 М или др. Приводит ли уменьшение концентрации ионов водорода, скажем, в 2 раза к уменьшению скорости реакции в 2 раза Каков порядок реакции Зависит ли он от площади поверхности и концентрации кислоты Попытайтесь вывести кинетическое уравнение процесса. [c.171]

    Величина 0, входящая в (ХХ.7), пропорциональна концентрации реагента на поверхности катализатора. Ввиду того что скорость реакции содержит 0 в первой степени, истинный порядок реакции всегда равен единице. Кажущийся порядок этой реакции связан с зависимостью скорости реакции от концентрации (или давления) внутри газовой фазы, и, как видно из (ХХ.7), может быть различным. При малых давлениях адсорбирующего газа можно пренебречь величиной Ьр в знаменателе этого уравнения. Тогда скорость реакции w оказывается пропорциональной давлению газа w = k p = kbp, и кажущийся порядок реакции равен единице. При этом величина кажущейся константы скорости равна произведению истинной константы скорости на адсорбционный коэффициент  [c.275]

    М] [М]ч порядок реакции уменьшается и на верхнем пределе по давлению к становится независимой от [М], причем порядок реакции равен единице. Такое изменение величины константы скорости реакции и ее порядка соответствует смене лимитирующей стадии процесса. Вместо активации стадией, определяющей скорость диссоциации, становится внутримолекулярный распад. Уменьшение к при низких давлениях [уравнение (1.7)] иллюстрируется на рис. 1.1. Температурная зависимость к при постоянном давлении или постоянном [М] будет отличаться для различных областей давления. При низких давлениях температурная зависимость к определяется величиной к, а на верхнем пределе по давлению — комбинацией констант к 1к2)к . Подробнее температурная зависимость к обсуждается после более конкретного определения отдельных уровней энергии А и А.  [c.17]

    Шульц и др. [111] исследовали кинетику полимеризации стирола в различных углеводородах и нашли, что скорость реакции приблизительно подчиняется уравнению второго порядка. Легко показать, чта второй порядок суммарной реакции возможен при бимолекулярном инициировании. Данные Шульца в области температур 100—132° С приводят к следующему выражению для скорости инициирования [112]  [c.56]

    Графический метод дает возможность определить порядок реакций. Приводим дифференциальные уравнения скоростей реакций различных порядков и их решения  [c.33]

    Туторский и др. [82, 83] изучали кинетику эпоксидирования полиизопрена (ПИ) надбензойной кислотой (НБК) и обнаружили, что реакция идет с замедлением. Константу ко авторы определяли по начальной скорости эпоксидирования, затем по уравнениям, аналогичным (VI.3), рассчитывали кинетические кривые для различных значений к и 2- (Реакция имеет первый порядок по ПИ и НБК, изменение концентрации НБК в ходе эпоксидирования учи- [c.224]

    Хорошим доказательством внедрения лиганда во внутреннюю координационную сферу служит второй порядок реакции первый — по комплексу Р1(П) и первый — по внедряющемуся лиганду. Эта закономерность установлена для реакций с различными комплексами Р1(П) и с разнообразными лигандами. Небольшая сложность возникает оттого, что вода как растворитель также может быть потенциальным лигандом. В результате скорость реакции типа (38) подчиняется уравнению, содержащему два слагаемых (39) это указывает на то, что реакция протекает [c.178]

    Чтобы учесть необходимость надлежащей ориентации, вводится числовой коэффициент о, который, по-видимому, для реакций между малыми симметричными молекулами имеет порядок единицы. В первом варианте своей теории Христиансен допускает возможность инактивации активного комплекса при столкновениях с другими типами молекул в растворе, включая и молекулы растворителя. Обозначим через р — вероятность того, что активный комплекс превратится в продукт реакции за 1 с, а через 2 полную вероятность того, что он за то же время инактивируется нри столкновении с различными частицами. Тогда уравнение для скорости реакции принимает вид  [c.167]

    Для переходного режима г, = 0 для внутридиффузнонного режима— это точка, в которой с(г ) = 0. Если обе реакции имеют одинаковый порядок, то диффузионное торможение не влияет на образование продуктов реакции. Дифференциальная селективность будет определяться только отношением констант скоростей параллельных реакций. Если реакции имеют различный порядок, то при переходе во внутридиффузионный режим, вследствие уменьшения концентрации исходных реагентов внутри гранулы катализатора, меньшее относительное изменение скорости будет у реакции с меньшим порядком. Проиллюстрируем это утверладение на примере двух параллельных реакций, для которых зависимости скорости химических реакций от концентрации описывается функциями /1(С)=С и 12 С) — С . В этом случае уравнение (П1.98) запишется в виде [c.80]

    Лимитирующей стадией процесса является вторая стадия. Если R — атом или простой радикал, то область концентраций М, в которой реакция имеет третий порядок, будет широкой вследствие большой скорости распада R2 или комплекса RM. В области высоких концентраций третьего тела (/JafM] 2> k i) скорость образования продукта рекомбинации будет следовать бимолекулярному закону Шр к = ilR] и лимитирующей стадией окажется первая стадия образования Ri или же комплекса RM. Таким образом, формально оба механизма могут приводить к однотипным кинетическим зависимостям, хотя смысл входящих в уравнения динамических параметров различен, как различно и существо протекающих процессов. [c.116]

    Ранее уже говорилось о том, что предположение об энергии активации согласуется с различными опытными и теоретическими положениями. Теория активных столкновений позволяет объяснить порядок би- и мономолекулярных реакций, а также температурную зависимость скорости реакции. Теория позволяет вскрыть физический смысл предъэкспоненциального множителя уравнения Аррениуса, который становится равным числу столкновений молекул в единице объема смеси за единицу времени. [c.285]

    Каждое из этих уравнений, связывающих эффективность обработки со временем удерживания для различных значений скоростей реакции и концентрации загрязнений в подаваемом стоке, можно использовать независимо. Особый случай, однако, представляет биофильтр с диффузией в биопленке, поскольку на разных участках одного и того же фильтра могут одновременно реализоваться все три варианта. Концентрация вещества в подаваемом стоке может быть достаточно высокой для того, чтобы вещество проходило фильтр насквозь, т. е. реакция имеет нулевой порядок. Падение концентрации вещества после некоторой обработки приводит к тому, что фильтр становится лишь частично проницаем, т. е. порядок реакции становится равным 1/2. Дальнейшее падение концентрации разлагаемых веществ приведет к переходу к реакции первого порядка. В итоге весь происходящий на биофильтре процесс можно рассматривать как реакцию первого порядка с пониженной эффективностью (см. разд. 5.1). [c.210]

    Так как может протекать и мономолекулярное, и индуцированное разложение одновременно, то наблюдаемую скорость реакции следует считать суммой обоих этих процессов. Наиболее легко обнаружить мономолекулярное разложение, если наблюдать разложение перекиси в присутствии ингибиторов, которые подавляют индуцированный процесс. В инертных растворителях перекись бензоила разлагается со скоростью реакции первого порядка . Однако в растворителях, дающих радикалы, которые Могут атаковать перекись, скорость разложения и порядок его часто больше 1,0. Разложение в диоксане, например, протекает наполовину за 23 мин при 80° С и не является реакцией первого порядка. Между тем если к диоксану добавить иод, стирол, тринитробензол или любой другой ингибитор, то реакция разложения перекиси станет первого порядка, а период полуразложения перекиси будет равен 270 мин. Отсюда следует, что в диоксане индуцированное разложение подавляется эффективными ингибиторами. Скорости разложения ряда замещенных по кольцу перекисей бензоила в диоксане, содержащем 3,4-дихлорстирол, оказались различными. В присутствии этого ингибитора влияние заместителей на мономолекулярное разложение можно изучить независимо от процесса индуцированного разложения. Было найдено, что скорости мономолекулярных реакций подчиняются уравнению Гаммета  [c.92]

    Установлено, что реакция имеет первый порядок по катализатору. Зависимости констант гидролиза АПА от температурьг для различных катализаторов хорошо описывается уравнением Аррениуса, энергии активации составляют для ИС1 = 64 для H2SO4 = 49 для смолы КУ-2-8чС = 51 кДж/моль, Ниже приведены значения констант скоростей k гидролиза АПА для различных катализаторов л /(моль ч)  [c.195]

    В начале процесса на поверхности, пока не наступает равновесие двух активных форм кислорода (молекулярного и атомарного), скорость окисления этилена зависит от концентрации кислорода. Первый порядок по этплепу и слабая зависимость скоростей реакций от концентрации кислорода указывают на установившееся равновесие 02 и 0 - Кинетические уравнения, выведенные на основании предложенной нами стадийной схемы, описывают различные случаи иротекания реакции на серебряном контакте. Эти уравнения усложняются при учете торможения скоростей продуктами реакции. Обычно проверкой правильности кинетических уравнений, выведенных на основании стадийной схемы, является совпадение величин скоростей, полученных опытным путем и рассчитанных. Вследствие отсутствия экспериментальных данных по определению констант скоростей ряда стадий выяснение недостатков схемы затруднено. [c.165]

    Кинетика этой реакции тоже изучена очень мало. В работе 381] приведены порядки реакций дегидродимеризации различных олефинов на виомут-оловянном катализаторе 1,5 для пропилена, 2,0 для изобутилена, 2,0 для бутена-1. Такой же порядок найден для превращений цис- и гра с-буте,на-2. Уравнение скорости реакции окислительной дегидродимеризации олефинов таково  [c.239]

    Неинициированная полимеризация. Первая работа, посвященная систематическому исследованию кинетики неинициированной полимеризации стирола, была опубликована примерно в 1937 г. Брайтенбах и Рудорфер [1] изучали эту реакцию в вакууме при 100° как в массе (т. е. полимеризацию чистого мономера), так и в различных растворителях. Результаты, полученные в разбавленных растворах, показали, что реакция имеет второй порядок относительно концентрации мономера полимеризация в массе была исследована только до глубины превращения 24%, так что оценка ее порядка была затруднительна, тем не менее можно предположить, что эта реакция подчиняется уравнению первого порядка. Сюсс с сотрудниками [2, 3] показали, что в самых различных растворителях реакция имеет второй порядок относительно концентрации мономера, если раствор содержит менее 60% стирола полимеризация в массе и па этот раз была исследована только до сравнительно небольших глубин превращения. Ранее Шульц и Хуземан [4] показали, что в широком интервале температур полимеризация в массе имеет первый порядок относительно концентрации мономера примерно до глубины превращения 60% при больших глубинах скорость реакции уменьшается быстрее, чем это соответствует уравнению первого порядка. Эти результаты показались сомнительными, так как опыты, в которых они были получены, проводились на воздухе и наблюдавшиеся скорости были выше, чем это имеет место при проведении полимеризации в вакууме [2]. Однако последующие исследования, проведенные в атмосфере азота [5], показали, что наблюдается только слабое отклонение от уравнения первого порядка это отклонение было приписано непрерывно возрастающим изменениям в реакционной среде в ходе полимеризации. [c.76]

    Чрезвычайно важным фактором для катионной полимеризации является природа реакщ10нной среды. Наблюдаемые при этом закономерности весьма просты повышение полярности среды, благоприятствуя реакциям инициирования и роста, приводит к ускорению полимеризации. Насколько существенно это влияние, показывают данные Кокли и Дейнтона по полимеризации стирола под влиянием комплексов RSn ls в различных средах в четыреххлористом углероде полимеризация вообще отсутствует, а в нитробензоле протекает с большой скоростью [16]. Весьма важно, что изменение полярности среды влияет не только на скорость процесса, но и на кинетические зависимости, например на порядок реакции. Это является результатом различий в механизме инициирования. Приведенное выше уравнение (V-11), которое, как уже отмечалось, не является общим для всех катионных систем, справедливо для сред, отличающихся высокой полярностью. В подобных случаях образование активных центров протекает без участия мономера и общая скорость реакции имеет 1-й порядок по мономеру (V-15). Напротив, в средах с низкой диэлектрической проницаемостью возникновение активных центров, особенно для комплексов, образованных слабыми основаниями Льюиса, происходит только при участии мономера. Степень этого участия на- [c.303]

    Аналогичные уравнения применяли и для расчета скорости гидрирования олефиновых углеводородов. Для расчета констант скоростей в уравнение 15 подставляли соответствующие экспериментальные данные, реже применяли графическое интегрирование экспериментальных кривых. Однако установление порядка реакции таким путем является лишь приближенным. Поэтому порядок реакции устанавливали по методике Хаугена и Уотсона [68]. Для каждого возможного уравнения скорости реакции было рассчитано значение /г для различных глубин гидрогенолиза и построены графики зависимости /г от глубины гидрогено.лиза. При графическом интегрировании этих соотношений были получены значения р для различных глубин гидрогенолиза. Такая [c.65]

    Ориентация присоединения определяется атакой иона алкоксида по двойной связи с образованием более стабилизованного карбаниона, который затем протонируется средой. В реакции цианоэтилирования [уравнение (63)] порядок реакционной способности различных алкоксидов, растворенных в исходном спирте, выглядит следующим образом [137] изо-Рг > ЕЮ > МеО", что совпадает с порядком уменьщения основности, причем для литиевых, натриевых и калиевых производных одних и тех же спиртов скорости реакции идентичны, что говорит в пользу справедливости гипотезы, согласно которой на первый стадии происходит атака ионом алкоксида. В примере, приведенном в уравнении (65), оба конца двойной связи несут активирующие группы присоединение спирта происходит по более замещенному концу. Однако в уравнении (66) атака нуклеофила протекает по менее замещенному -положению, а не по более замещенному, но сходным образом сопряженному у-положению. В случае присоединения к несимметричным фторалкенам [136] нуклеофил атакует Ср2-группу, и в примере, приведенном в уравнении (68), нер-фторалкен оказывается настолько реакционноспособным по отношению к нуклеофильной атаке, что нет необходимости в основном катализаторе. [c.326]

    Периодические реакторы. Разложение исходного соединения проводят в закрытом реакторе. Скорость реакции определяют, периодически анализируя пробы реакционной смеси или проводя серию опытов различной продолжительности и определяя степень превращения каждого из них. Скорость реакции можно определять, и измеряя возрастание давления, например, тензографом. Для повышения точности последний метод необходимо сочетать с анализом продуктов (определение числа молекул, образовавшихся из одной молекулы исходного реагента). Этот метод дает наилучшие результаты при изучении реакций с низкой степенью превраи1,е-ния. При некоторых условиях резко увеличивается отклонение реакционной смеси от закона идеальных газов н необходимо знать или найти расчетом коэффициент сжимаемости. Измерение скорости возрастания давления [2,31 удобно использовать для быстрого изучения кинетики реакций большого числа соединений и сравнения их относительной стабильности. Современные методы позволяют точно измерить скорость реакции при степени превращения реагирующих веществ 1—2% от введенного общего количества. Обычно принимают, чтс при разложении одной молекулы сырья образуется две молекулы продуктов. Если принять, что реакционная смесь подчиняется законам идеальных газов и реакция имеет первый порядок, то константу скорости можно легко вычислить из уравнения [c.54]

    Экспериментальные точки, полученные при различных количествах катализатора, различных объемах пробы, разных количествах амиленокислородной смеси и различных формах импульсов, хорошо ложатся на прямую в координатах средняя скорость реакции — концентрация . Эти данные позволяют сделать вывод о том, что в условиях эксперимента реакция окислительного дегидрирования амиленов протекает по первому порядку. Первый порядок подтверждается также тем, что значение константы скорости не зависит от формы введенного импульса. Поэтому поправочный множитель в уравнении (У.69) равен единице. Константа скорости суммарной реакции окислительного дегидрирования для смеси указЕ нного выше состава оказалась равной 0,42 сек . Таким же методом был определен порядок реакции по кислороду. Опыты проводились следующим образом. К пробе в 0,5 мл амиленов добавляли разные количества (0,25 0,5 1,2 5,5 сл4 ) кислорода, а затем доводили гелием объем пробы до 10сл4 . Результаты опытов показали, что скорость реакции не зависит от концентрации кислорода, т. е. наблюдается нулевой порядок по кислороду. Поскольку на основании рис. VI. 35 был определен первый порядок по сумме исходных реагентов, то отсюда вытекает для исследуемой реакции первый порядок по изоамиленам. [c.323]


Смотреть страницы где упоминается термин Скорость реакции уравнения различных порядков: [c.802]    [c.802]    [c.593]    [c.99]    [c.593]    [c.293]    [c.372]   
Основы химической кинетики (1964) -- [ c.29 , c.66 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Порядок реакции

Реакции порядок Порядок реакции

Скорость и порядок реакции

Скорость реакции порядок реакции

Уравнение скорости

Уравнения реакций



© 2025 chem21.info Реклама на сайте