Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбониевый механизм реакций каталитического крекинга

    При каталитическом крекинге расщепление углеводородов осуществляется на алюмосиликатах — типичных катализаторах ионных реакций. В их присутствии реакции расщепления идут не по свободнорадикальному механизму, как при термическом крекинге, а по ионному, через промежуточную стадию положительно заряженных карбониевых ионов. Последние образуются из олефинов, которые получились хотя бы в небольшом количестве при термическом распаде сырья, и протонов, генерируемых катализатором кислотного типа (см. ионно-цепной процесс на стр. 41—42)  [c.58]


    Этот класс катализаторов включает главным образом окислы и галогениды легких элементов третьей, четвертой и пятой групп периодической системы, способные катализировать полимеризацию, изомеризацию, крекинг, алкилирование и другие реакции углеводородов. Понимание природы процессов, протекающих на поверхности этих катализаторов, облегчается, если принять во внимание тот факт, что указанные реакции катализируются также сильными кислотами. В последнем случае был предложен механизм с участием карбониевых ионов как промежуточных активных форм. По-видимому, аналогичные промежуточные вещества могут возникать и в гетерогенных каталитических реакциях. В последние годы был получен ряд доказательств, особенно для очень широко распространенных катализаторов — алюмосиликатов, что рассматриваемый класс катализаторов представляет собой потенциальные кислоты. [c.48]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]

    Гипотеза о пр6ме1куточном образовании карбониевых ионов плодотворно примененная для объяснения механизма многих реакций в органическойк химии успешно использована и для объяснения механизма ионных реакций, протекающих в процессах переработки нефти. Основные обобщения сделаны применительно к каталитическому крекингу но могут быть, с определенной ревизией, использованы и для процессов гидрогенизации. Эти обобщения, получившие название карбониево-ионной теории, в первую очередь должны были объяснить различия протекания каталитического и термического крекинга. [c.119]


    Почти одновременно были опубликованы результаты измерения каталитической активности цеолитов X с двузарядными катионами [5, 133]. При крекинге парафинов и кумола СаХ более активен, чем NaX и аморфный алюмосиликат, и в присутствии СаХ образуются продукты, типичные для реакций, протекающих по карбониево-ионному механизму. В то же время NaX по активности в крекинге парафинов близок к алюмосиликату, но состав продуктов говорит о радикальном механизме реакции (см. ниже). Исследовательская группа фирмы Mobil Oil [134] впервые привела примеры молекулярно-ситовых эффектов в катализе на цеолитах и указала, что превращения на цеолитах происходят во внутрикристаллическом пространстве. Так, например, узкопористый цеолит СаА катализирует крекинг н-гексана, но в крекинге 3-метилпентана активность не проявляет, поскольку разветвленные углеводороды не могут проникнуть в узкие поры этого цеолита. Таким образом, по сравнению с сильно развитой внутренней поверхностью полостей и каналов (600—900 м7г) внешняя поверхность цеолитов весьма невелика и в катализе она роли не играет. [c.40]

    Изомеризация циклопарафинов в олефины протекает, по-видимому, по такому же механизму как изомеризация олефинов — через образование иона карбония. Изомеризация циклопропана в пропилен на протонных кислотах протекает с высокой скоростью [591]. Индивидуальные окислы (AI2O3, SiO 2), имеющие малую протонную кислотность, каталитически неактивны. Закономерности изменения каталитической активности в реакции изомеризации циклогексана в метилциклопентан (как и в крекинге циклогексана) также объясняются автором работы [422] с точки зрения положений карбониево-ионной теории. Сравнительно невысокую изомеризующую актив- [c.182]

    Цеолиты с многозарядными обменными катионами. Электростатические поля и кислотность. Самые ранние представления о каталитическом превращении углеводородов на цеолитах содержатся еще в первой работе, выпущенной в 1960 г. исследовательской группой фирмы Union arbide [4]. В качестве модельной реакции была выбрана скелетная изомеризация н-гексана под давлением водорода при 350—400° С. Катализаторами служили цеолиты с 0,5% Pt. Авторы обратили внимание, что активность катализатора в этой реакции, протекающей по карбониево-ионному механизму, обусловлена не только декатионированием, но и обменом Na на многозарядные катионы Mg=+, Са +, Sr +, Zn=+, Mn=+, e , Al +, e + и Th +, т. e. на такие ионы, которые, как считалось, отравляют алюмосиликатные катализаторы крекинга. Оказалось, что у активированных аммонийных форм каталитическая активность появляется уже после 10%-ного обмена, превращение над Са -формой было значительным только после того, как степень обмена превысила 40%. Цеолиты Y были более активны, чем X. Была предложена гипотеза, согласно которой активность катализатора определяется существованием нескомпенсированных электростатических зарядов, возникших из-за того, что один двузарядный катион не может образовать эквивалентные связи с двумя заряженными тетраэдрами AIO4. Такое разделение зарядов должно становиться все более эффективным по мере увеличения расстояния между соседними атомами алюминия, т. е. при переходе от цеолитов X к цеолитам Y. [c.39]

    При исследовании каталитических свойств морденитов была обнаружена уникальная способность Н-морденита проводить гидроизомеризацию парафинов в отсутствие благородных металлов [115, 116, 293]. По условиям проведения эта реакция занимает как бы промежуточное положение между реакциями крекинга на кислотных катализаторах и реакциями гидрокрекинга на бифункциональных катализаторах, содержащих благородные металлы. Активность Н-морденита в гидроизомеризации меняется обратно пропорционально величине парциального давления водорода [116], но селективность и продолжительность работы катализатора при повышении давления Н2 возрастают [293]. Миначев и другие авторы работы [116] предложили собственный механизм гидроизомеризации на Н-мордените [реакция (70)], который объясняет влияние концентрации водорода на активность и селективность. В соответствии с этим механизмом повышение давления Hj должно, с одной стороны, снижать кон-центряпию промежуточных карбониевых ионов и тем самым уменьшать общую изомеризующую активность, а с другой — подавлять крекинг этих карбониевых ионов и, следовательно, увеличивать селективность (ср. работу [294]). Возможность переноса гидрид-ионов [c.108]

    В. И. Вернадский, рассматривая А12О3 и 5102 как ангидриды кислот, впервые дал представление об алюмосиликатах как алюмокремневых кислотах. Синтетически полученные алюмосиликатные катализаторы, по предположению ряда авторов, состоят из двух соединений первое типа алюмосиликагеля, второе типа монтмориллонита. Каталитической активностью обладают только кислые алюмосиликаты. Рядом авторов установлена зависимость между каталитической активностью алюмосиликатов и их обменной кислотностью, т. е. содержанием способного к обмену иона водорода. Механизм каталитических реакций на алюйосиликатных катализаторах не вполне выяснен. На поверхности катализатора предполагают присутствие слабо связанного водорода, который может участвовать при реакции перераспределения в реагирующих молекулах адсорбированного на катализаторе вещества и способствовать течению реакций крекинга, изомеризации, полимеризации и др. Считается также, что катализатор структурно должен соответствовать адсорбированной молекуле реагирующего вещества. Ряд авторов предложил свои схемы реакций. Наиболее вероятным, по-видимому, является ионный механизм процесса. Некоторые полагают, что весьма реакционноспособным является окруженный секстетом электронов положительно заряженный ион углерода (карбониевый ион). [c.130]



Смотреть страницы где упоминается термин Карбониевый механизм реакций каталитического крекинга: [c.106]    [c.22]    [c.33]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Карбониевый механизм

Карбониевый механизм реакций

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг каталитический механизм

Механизм реакции каталитической

Механизмы реакций крекинга каталитического

Реакции каталитические

Реакции крекинга



© 2025 chem21.info Реклама на сайте