Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия и энтропия в биосфере

    Углеводы стоят в начале и в конце этого грандиозного, непрерывно проходящего через биосферу потока энергии и энтропии главными продуктами фотосинтеза являются гексозы, а главным источником энергии, удовлетворяющей повседневные потребности всех живых организмов, служит В-глюкоза. [c.137]

    Б. ЭНЕРГИЯ И ЭНТРОПИЯ В БИОСФЕРЕ [c.12]

    Хотя клетки используют освобождающуюся в процессе катаболизма энергию в сопряженных эндергонических процессах синтеза анаболизм), а также запасают ее в синтезированных продуктах, все же какая-то часть энергии непрерывно рассеивается в виде тепла вследствие неидеального сопряжения между биохимическими реакциями, при переходе химргаеской энергии в другие формы энергии (например, в механическую или электрическую) и т. д. В результате энтропия биосферы возрастает. Это — следствие второго закона термодинамики для любой замкнутой системы. Таким образом, жизнь на Земле неизбежно должна была бы прекратиться, не будь непрерывного притока лучистой энергии извне и фотосинтеза, который использует эту энергию. [c.314]


    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    Самоорганизация и эволюция открытых биологических систем на всех уровнях, начиная с клетки и кончая биосферой в целом, происходят вследствие оттока энтропии в окружающую среду. Земля получает энергию от Солнца в виде потока фотонов. Согласно обоснованным оценкам (Эбелинг), поток энергии, достигающий Землю, равен [c.19]


    Во второй половине XX века производственная и хозяйственная деятельность человека достигла такого уровня, что техногенные массы веществ (в том числе отходов) и количества вовлеченной в деятельность человека энергии стали сопоставимыми с естественными потоками в биосфере. Количественные оценки потребления человеком энергии очень трудны и ненадежны, но можно, например, отметить, что уже после опубликования работ В. И. Вернадского массовая замена поездов как средства передвижения на автомобили привела к десятикратному увеличению энергетических затрат на перемещение одного человека. Согласно второму началу термодинамики (см. разд. 10.4), при сжигании топлива лишь часть полученной теплоты АН может быть использована в виде свободной энергии АС, а остаток расходуется на повышение энтропии в системе. Если в качестве системы рассматривать биосферу, то это означает, что часть энергии идет на образование отходов, рассеивающихся в окружающей среде и загрязняющих ее. По предварительным оценкам экологов, из каждой тонны сырья в среднем получается 900 кг отходов. Кроме этого, часть вырабатываемой энергии рассеивается в форме тепла, создающего опасность нарушений естественных тепловых потоков на Земле, что, в свою очередь, чревато снижением урожаев, гибелью лесов - основных природных реакторов , очищающих воздух, уменьшением запасов пресной воды при таянии вечных снегов и т. д. В промышленное производство и хранение отходов вовлекаются все большие площади земной поверхности, в результате чего сокращаются посевные участки, а их новое увеличейие часто происходит за счет вырубки лесов. Таким образом оказались затронуты условия существования людей, а также животного и растительного мира в глобальном масштабе. [c.491]

    В стационарном состоянии энтропия Земли также должна быть постоянной. Понятие об энтропии излучения, связанной с его энергией, было введено Больцманом позже его использовал Планк при выводе своего знаменитого закона излучения, лежащего в основе квантовой теории. Возрастание энтропии Земли происходит за счет солнечного излучения, а ее снижение — за счет электромагнитного излучения Земли. Но большое количество энтропии постоянно производится на Земле в результате протекания необратимых процессов. Скорость производства энтропии должна равняться скорости ее суммарной потери. Следовательно, в итоге Земля теряет энтропию, или, как выразился Шредингер [1666], поглощает отрицательную энтропию (негэнтропию, по Брил-люэну [274]). Производство энтропии должно уравновешиваться суммарной потерей энтропии и для отдельных частей Земли, если они находятся в стационарном состоянии. Таким образом, это верно и для ее поверхностного слоя, в частности для биосферы. [c.13]


Смотреть страницы где упоминается термин Энергия и энтропия в биосфере: [c.212]    [c.491]    [c.101]    [c.7]    [c.7]   
Смотреть главы в:

Эволюция биоэнергетических процессов -> Энергия и энтропия в биосфере

Эволюция биоэнергетических процессов -> Энергия и энтропия в биосфере




ПОИСК





Смотрите так же термины и статьи:

энергий энтропия



© 2024 chem21.info Реклама на сайте