Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возрастание энтропии

    Почему растворение твердого или жидкого вещества в воде приводит к возрастанию энтропии, тогда как растворение газа вызывает уменьшение энтропии  [c.84]

    Самопроизвольный процесс сопровождается снижением энтальпии и возрастанием энтропии, т. е. уменьшением полной энергии системы и увеличением ее неупорядоченности. [c.38]

    Физический смысл (2.70) ясен — скорость реакции в общем случае определяется не только теплотой активации, но и изменением свободной энергии при переходе в активированное состояние, причем эти факторы противоположны по своему действию. Если переход в активированное состояние ведет к сильному увеличению энтропии, то реакция будет идти с большой скоростью несмотря на высокие значения энергии активации. И напротив, если возрастание энтропии невелико, то даже при низких значениях ДН (или ди) реакция будет протекать медленно. Поскольку величина ДН (или Ди) связана с энергией активации, то величину ДЗ формально можно связать со стерическим фактором из (2.20). По этой причине стерический фактор иногда называют энтропийным множителем. [c.78]


    Стремление системы к возрастанию энтропии назовем энтропийным фактором. Этот фактор проявляется тем сильнее, чем выше температура. Количественно энтропийный фактор можно оценить произведением 7 А5 и выразить в. единицах энергии (Дж). [c.172]

    При высоких температурах, как видно из табл. 2, наиболее вероятно протекание реакций, сопровождающихся возрастанием энтропии, в том числе и эндотермических реакций. [c.81]

    При этом переходе изменение Л// невелико. В то же время вследствие увеличения в результате реакции числа растворенных частиц и, следовательно, увеличения неупорядоченности системы наблюдается заметное возрастание энтропии. Большое повышение энтропии приводит к большому понижению энергии Гиббса. Повышение устойчивости хелатных структур по сравнению с не-хелатными обусловлено, следовательно, прежде всего энтропийным фактором. [c.188]

    Синтез N0 из простых веществ сопровождается возрастанием энтропии системы. Поэтому в соответствии с уравнением [c.359]

    Система смешанного газа будет иметь большую энтропию (неупорядоченность), чем система чистых газов. Возрастание энтропии означает не что иное, как уменьшение порядка системы, или, что то же самое, возрастание неупорядоченности, или возрастание необратимости. [c.38]

    Итак, движущая сила реакции, проводимой при постоянных давлении и температуре, измеряется изменением свободной энергии продуктов по сравнению с реагентами. Если изменение свободной энергии отрицательно, реакция протекает самопроизвольно если изменение свободной энергии положительно, реакция протекает самопроизвольно в противоположном направлении если же изменение свободной энергии равно нулю, реагенты и продукты находятся в равновесии. Изменение свободной энергии складывается из двух составляющих AG = АН — TAS. Значительное уменьшение энтальпии, означающее выделение теплоты, благоприятствует протеканию реакции. Но следует учитывать и другой фактор. Значительное возрастание энтропии при образовании продуктов из реагентов также благоприятствует реакции. При обычных температурах энтропийный фактор, как правило, невелик, и поэтому AG и АН имеют одинаковые знаки. В таких случаях самопроизвольные реакции оказываются экзотермическими. Но возможны и другие варианты, когда энтальпийный и энтропийный факторы действуют в противоположных направлениях, и может случиться, что энтропийный член оказывается преобладающим. Это относится главным образом к реакциям, в которых происходит превращение твердого или жидкого вешества в газы или растворы. [c.75]

    Таким образом, существует ряд областей протекания процесса, в которых лимитирующей стадией является либо процесс теплоотвода, либо процесс подвода исходных веществ, участвующих в реакции, либо отвод продуктов реакции, либо само химическое взаимодействие. В сложных системах может быть большое разнообразие элементарных процессов и соответственно возможно существование большой группы областей протекания суммарного процесса, в том числе и такой области, в которой скорость возрастания энтропии определяется гидродинамическими процессами, когда термодинамическая движущая сила пропорциональна градиенту плотности пли градиенту давления. [c.18]


    Объясните причину возрастания энтропии в реакции [c.87]

    Таким образом, величина д/Т представляет собой минимальное возрастание энтропии, осуществляемое только в условиях обратимого переноса теплоты, т. е. когда нагреваемая система находится в тепловом равновесии с нагревающим ее окружением. Теплота переходит от одного тела к другому вследствие того, что они не находятся в равновесии, а для того, чтобы перенос тепла осуществлялся обратимым путем, потребовалось бы бесконечно большое время. Подлинно обратимые процессы являются идеализациями реально протекающих необратимых процессов. Но важно отметить, что в любом реальном (необратимом) процессе возрастание энтропии должно превышать величину д/Т, однако чем медленнее и осторожнее будет осуществляться перенос теплоты, тем меньше будет разница между величинами и д/Т. [c.55]

    Хотя эта реакция еще более эндотермична (ЛЯ да = 274 кДж/моль), возрастание энтропии на 155 Дж/(град-моль) обеспечивает протекание процесса, но уже при более высокой температуре. Соединения Zr (III) и Hf (III) подробно не изучены. [c.538]

    Между потоком и скоростью возрастания энтропии существует следующая зависимость  [c.56]

    Возрастание энтропии при образовании АМ является возможным, если связь в АМ очень слаба (как это обычно и наблюдается), так как происходит замена сильной связи в АВ на слабую связь в АМ, результатом чего является возрастание колебательной энтропии и также, очень вероятно, вращательной энтропии. [c.278]

    Возрастание энтропии с увеличением беспорядка в расположении частиц вытекает и положений статистической термодинамики (стр. 102 и сл.). [c.96]

    Если объединить больцмановские представления об энтропии с законами термодинамики, мы придем к одному из наиболее важных принципов науки при всяком реальном, самопроизвольном процессе, включая химические реакции, неупорядоченность Вселенной обязательно возрастает. В любой изолированной системе, в которой полная энергия не может изменяться, самопроизвольной является реакция, при которой происходит возрастание энтропии (и неупорядоченности). Без постороннего вмешательства невозможен ни один процесс, результатом которого является повышение порядка, т.е. уменьшение энтропии. Поставляя в систему достаточную энергию, можно заставить протекать реакцию, даже если в результате нее происходит уменьшение энтропии. Но если не поставлять достаточной энергии, реакция, приводящая к повышению упорядоченности, никогда не произойдет. [c.57]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Она растет не только с повышением температуры, но и при плавлении (и возгонке) твердого вещества, при кипении жидкости, т. е. при переходе вещества из состояния с меньшей энергией в состояние с большей энергией. Ростом энтропии сопровождаются и процессы расширения, например газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соедннения, когда вследствие роста числа частиц неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повы- [c.177]

    Реакция должна протекать самопроизвольно (АС < 0). Изменение энтальпии противодействует самопроизвольному протеканию реакции (АЯ > 0), но изменение энтропии благоприятствует ему (А5 > 0) и играет преобладающую роль. Возрастание энтропии происходит потому, что в результате реакции вместо 1 моля твердого вещества образуются 2 моля жидкости. [c.533]

    Очевидно, что любой из членов правой части уравнения (1.25) может оказывать определяющее влияние на скорость суммарного процесса возрастания энтропии. Однако поскольку все термодинамические коэффициенты . 1 х. х существенно больше нуля, определяющее влияние одного из слагаемых может иметь место только в то случае, когда квадраты термодинамических движущих [c.17]

    Возрастание энтропии вещества при повышении температуры иллюстрируется рис. 15. Влияние давления на энтропию покажем на примере аммиака если при Т = = 500° К и Я = 1 атм = 50,7 э. е., то при Т = 500° К и Р = 300 атм = 35,0 э. е. [c.35]

    Усложнение молекулы приводит к возрастанию энтропии. Так. (5°29 )о = 38,47 (5°20в)о, = 49,00 (5°2Э8)о, = = 57,08 э. е. если у атомарного кислорода возможно только поступательное движение частиц, то у молекул кислорода — и поступательное, и вращательное, и колебательное движение, а у угловых молекул озона набор вращательных и колебательных движений увеличивается это означает, что Wo, >wo, >Wo, а поэтому и So, >5о, >5о. Аналогично имеем (S°2gg)so, (61,2) >(S°298)so, (59,2) >(S°2g8)so (53,0). Этот вывод справедлив для жидких и для кристаллических веществ  [c.39]

    Возможность самопроизвольного течения процесса смешения двух газов и невозможность их самопроизвольного разделения также объясняются статистическим характером этих процессов. Представим себе, что в двух разделенных перегородкой частях сосуда находятся два различных газа при одинаковой температуре и одинаковом давлении. Если удалить перегородку, разделяющую газы, то начнется процесс взаимной диффузии, который приведет в результате к полному смешению газов (мы рассматриваем газы при обычном давлении). Такой процесс происходит самопроизвольно и сопровождается возрастанием энтропии системы. При этом процессе происходит в то же время переход системы из состояния менее вероятного (когда молекулы одного вида сгруппированы в одной части объема, а молекулы другого вида — в другой части объема) в более вероятное (когда молекулы каждого данного вида равномерно распределены по всему объему системы). Легко видеть, что обратный процесс, при котором в одной части объема сгруппировались бы все молекулы одного вида, а в другой части — другого вида, является настолько маловероятным, что практически он может считаться невозможным. [c.211]


    Процесс образования дефектов кристаллической решетки, конечно, эндотермический, но, как и всякое разупорядочение, сопровождается возрастанием энтропии. Поэтому в согласии с AG = Д/У — TAS при любог температуре, отличной от абсолютного пуля, в реальном кристалл должны существовать дефектные позиции пли вакансии. В области гомогенности свойства соединений переменного состава (энтальпия и энергия Гиббса образования, энтропия, электрическая проводимость и пр.) изменяются непрерывно. Например, для нитрида циркония энтальпия и энергия Гиббса образования имеют следующие значения (кДж/моль)  [c.261]

    Большинство значений частотных факторов лежит в интервале 101 — 10 сек , как это и предсказывает теория. Более низкие частотные факторы в большинстве случаев можно объяснить с точки зрения уменьшения энтропии, сопровождющего образование переходного комплекса. Более высокие частотные факторы также можно объяснить с точки зрения возрастания энтропии, сопровождающего образование переходно го комплекса. Имеются и исключения из обоих этих случаев, требующие дальнейшего изучения. Они были отмечены в предыдущих разделах. [c.234]

    Следует отметить, что, как показывает содержание предыдущего параграфа, критерий направления процессов и постулат о существовании и возрастании энтропии в основных важнейших чертах вытекают из молекулярно-статистических соображений. Поэтому (а также на основании изложенного выше) не следует считать проблему аксиоматики второго закона термодинамики (т. е. проблему формулировки его в совершенно общей форме в пределах члсто термодинамического метода и оторванно от методов и нoJЮжeний статистической физики) существенной научной проблемой. Учитывая это, лишь кратко остановимся на одном виде аксиоматики второго закона термодинамики, предложенной в близких формах Шиллером (Киев, 1895) и Каратеодори (1911). Их аксиоматика не связана с тепловыми машинами и коэффициентом полезного действия последних. [c.109]

    Найдем скорость изменения энтропии при процессе теплопередачи через стержень. Если стержень изолирован вдоль своей длины в тепловом отношении, то при TauHOHapHOMJпроцессе энтропия его постоянна, а суммарное возрастание энтропии в единицу времени связано с процессами передачи теплоты резервуарами на концах стержня и равно в соответствии с уравнением (III, 36)  [c.112]

    Процесс растворения сопровождается значительным возрастанием энтропии системы, так как в результате равномерного распределения частиц одного всщсства в другом резко увеличивается число микросостояний системы. Поэтому, несмотря на эндотер-мичиость растворения бол1,шинства кристаллов, изменение энергии Гиббса систсмы при растворении отрицательно и процесс протекает самопроизвольно. [c.216]

    Энтропия метанола, СН3ОН, при растворении возрастает лишь незначительно, поскольку моль молекул метанола, диспергированных между молекулами воды, оказывается нена шого больше неупорядоченным, чем моль чистого жидкого метанола. Растворение муравьиной кислоты, НСООН, приводит к большему возрастанию энтропии, поскольку ее молекулы частично диссоциируют на протоны и формиат-ионы, НСОО в результате чего из одной частицы образуются две. Кристаллическая решетка хлорида натрия при растворении полностью разрушается, и при этом образуются гидратированные ионы Na и С1 , что обусловливает значительное возрастание неупорядоченности, хотя часть молекул воды оказывается связанной вследствие гидратирования ионов. Заметим, что энтропия раствора Na l получена из данньк приложения 3 путем сум шрования энтропий водных растворов двух ионов  [c.62]

    Таким образом, специфика конкретного сложного химического процесса существенно зависит от величины его скорости. Подчиняясь законам сохранения энергии и возрастания энтропии в целом (потенциальность в большом), локально реакция может быть свободной от ограничений второго начала (псевдопотенциальность в малом). Следующая механическая аналогия, заимствованная из [11, очень хорошо отражает существо и принципиальные закономерности сложного нелинейного неравновесного химического процесса. Представим себе поток воды, стекающий с некоторого озера, расположенного на вершине холма. Даже точное и полное знание рельефа склонов не позволяет однозначно найти характеристики стоков. В каждой точке рельефа течение определяется не только локальными особенностями рельефа, но и предысторией процесса (т. е. рельефом в целом). Наличие поперечных перетоков (нелинейные связи), возможность течения воды по направлениям, обеспечивающим локально более высокую скорость, но менее благоприятных в целом (маршруты реакции), и т. д. и т. п. — все это проявления локальной псевдопотенциальности, не позволяющие описать процесс однозначно. Ясно, что с ростом скорости потока (зависящей в числе прочего и от массы воды в озере) эти трудности усугубляются (высокая неравновесность), с падением же скорости (малая масса воды в озере, пологий рельеф) процесс приближается к равновесному, и его особенности могут быть учтены все более и более строго (в том числе и в рамках линейного приближения). [c.103]

    Следует также отметить, что сопоставление влияния различных стадий процесса на суммарную скорость возрастания энтропии может осуществляться строгим образом только в терминах термодинамики неравновесных процессов, поскольку, ка11 было показано выше, попытки сопоставлять скорости илп движущие силы процессов, выраженные в количествах вещества или концентрациях, приводят иногда к неприемлемым результатам. [c.18]

    Изменение внутренней энергии равно механической работе, т. е. 5U=5A, или 5L = - 5Q = - T5,S, где сохранено введенное выше обозначение для L и учтено, что в адиабатических условиях deS = О и возрастание энтропии тела равно d,S. Имея в виду уравнение (3.36), постулируем, что 6L = О при t = onst. [c.197]

    Это объясняется тем, что если у атомного кислорода возможно только поступательное движение частиц, то у молекул кислорода— н поступательное, и вращательное, и колебательное движение, а у угловых молекул озона набор вращательных и колебательных движений увеличивается. Это означает, что г >(Оз) > > W (О2) > W (О), а поэтому и 5 (Оз) > S (О2) > S (О). Аналогично имеем S29f (SO i)=257, S298(S02)=248, S29e(SO)=222 ДжДмоль-К). Возрастание энтропии с усложнением молекул происходит также [c.180]

    Сольватация является процессом экзотермическим (АЯсол оСО) поэтому теплота растворения может иметь различный знак. Сольватация означает упорядочение состояния системы (так как происходит уменьшение числа частиц). Следовательно, А5сольв<0 однако но абсолютной величине последнее слагаемое обычно невелико, поэтому растворение сопровождается возрастанием энтропии. [c.136]

    Сворктва идеальных растворов, подобно свойствам разреженных газовых смесей, не зависят от природы растворенного вещества, а определяются лишь их концентрацией. Следовательно, единственной причиной их образования (как и образования газовых смесей) является возрастание энтропии при смешении. Для идеального раствора А5раств =Ь0 (так как растворение связано с изменением величины 10 для любого раствора). Однако А5смеш. в этом случае не будет зависеть от природы компонентов, а однозначно определится их соотношением (мольными долями). [c.137]


Смотреть страницы где упоминается термин Возрастание энтропии: [c.538]    [c.227]    [c.112]    [c.199]    [c.64]    [c.532]    [c.25]    [c.18]    [c.20]    [c.177]    [c.180]    [c.233]    [c.35]    [c.48]    [c.267]   
Смотреть главы в:

Стохастические процессы в физике и химии -> Возрастание энтропии

Стохастические процессы в физике и химии -> Возрастание энтропии

Лекции по основам газовой динамики -> Возрастание энтропии


Химическая термодинамика (1966) -- [ c.56 , c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте