Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Повышение энтальпии и энтропии

    В связи с тем, что нами для расчетов термодинамики химических реакций, использовались исходные данные, взятые из различных источников, возникает вопрос о различии этих данных для графита, водорода, кислорода и получаемых из них углеводородов. В табл. I приведены значения приращения энтальпии, функции энергии Гиббса и энтропий кислорода, водорода, графита, метана, этилена и ацетилена при температурах 298, 15,500, 1000 и 1500° К по двум источникам [34] и [55], а также показана разность между ними. Расхождения между этими величинами для кислорода и водорода сравнительно небольшие, в четвертом знаке. Для графита и углеводородов погрешности несколько большие. Абсолютная погрешность термодинамических величин для углеводородов с повышением температуры обычно увеличивается. [c.144]


    В следующей главе приведены стандартные термодинамические функции простых веществ и соединений, в том числе большого числа углеводородов. По термодинамическим функциям углеводородов можно найти аналогичные функции их производных (кислород-, азот-, галоген- и серусодержащих), вводя соответствующие поправки. Приводимые в этом разделе значения поправок (табл. П.11) найдены в [27] и нами путем усреднения изменений для конкретных соединений. При расчетах энтальпии образования и энтропии вещества при повышенных температурах можно пользоваться приближенным условием  [c.394]

    Протекание какой реакции следует ожидать в см си веществ а) реакции, сопровождающейся понижением энтропии и повышением энтальпии системы б) реакции, сопровождающейся повышением энтропии и понижением энтальпии  [c.143]

    Таким образом, изменение изобарно-изотермического потенциала реакции становится равным изменению энтальпии. Расхождение между этими функциями состояния увеличивается с повышением температуры. Другими словами, с повышением температуры направление химической реакции зависит уже от двух факторов — от знака изменения энтальпии и от значения изменения энтропии. [c.78]

    Итак, можно утверждать, что с повышением энтальпии и энтропии нефтегазовой системы (с улучшением термодинамических обстоятельств в залежи) в значительной степени удается увеличить степень охвата пласта полезной выработкой и конечное значение нефтеотдачи коллектора. [c.79]

    Что такое термодинамическая функция отклонения от идеального состояния Как выполняется расчет энтальпии, энтропии, теплоемкости вещества, реакции при повышенных давлениях. [c.197]

    Из простых термодинамических соображений можно показать, что повышение температуры способствует увеличению стабильности продуктов диспропорционирования, н наоборот. Для этого надо только вычислить разность свободных энергий продуктов, определяющую термодинамическую стабильность последних. Существует критическая температура, при которой продукты, образующиеся в результате диспропорционирования и рекомбинации, имеют одинаковую стабильность. При температурах выше критической увеличивается стабильность продуктов диспропорционирования. Значения разностей энтальпий, энтропий и свободных энергий, вычисленные при 25°С и давлении радикалов 10 - агл , позволяют предсказать изменения отношения процессов диспропорционирования и рекомбинации в соответствии с опытом. При расчетах предполагалось, что обе реакции диспропорционирования этильных и пропильных радикалов эквивалентны. Согласие расчетов и экспериментов показывает, что при реакциях рекомбинации и диспропорционирования радикалов успевают установиться равновесные соотношения между исходными радикалами и продуктами. [c.232]


    Как показывают рассмотренные выше примеры, самопроизвольное протекание процесса связано с повышением хаотичности, или неупорядоченности, системы. Степень неупорядоченности выражается термодинамической величиной, называемой энтропией, которая обозначается латинской буквой 5. Чем больше хаотичность системы, тем больше ее энтропия. Подобно энтальпии, энтропия является функцией состояния (см. разд. 4.5, ч. 1). Изменение энтропии, сопровождающее процесс А5 = зависит только от исходного и конечного состояний системы, но не от конкретного пути, по которому происходит переход из одного состояния в другое. [c.177]

    Физическая природа гидрофобных взаимодействий своеобразна. Плохая растворимость углеводородов в воде связана не с повышением энтальпии системы, а с уменьшением ее энтропии. Соответственно растворимость углеводорода в воде уменьшается, а не растет при нагревании. Энтальпия понижается также, но в общем балансе свободной энергии этот эффект перекрывается энтропийным. Так, при растворении бутана СдН, в воде при 298 К энтропия понижается на 96,6 Дж/(моль-К), а энтальпия — на 4200 Дж/моль. В результате свободная энергия возрастает на [c.106]

    Метод групповых уравнений применим для расчета энтальпии (Яг — Яо), функции энтальпии (Яг — Яо)/Г, теплоемкости (Ср), энтропии (5г), функции энергии Гиббса (Gr — Яо)/г и связанных с ними величин. При расчете последних двух функций необходимо учитывать различие степени симметрии сопоставляемых веществ. Для повышения точности результатов вносят также поправку, отражающую влияние различия энергетических барьеров внутреннего вращения, если для этого имеются необходимые данные .  [c.268]

    Реакция превращения цикла в линейный полимер возможна, если она протекает с уменьшением изобарно-изотермического потенциала, т. е. если изобарно-изотермический потенциал цикла превышает изобарно-изотермический потенциал элементарного звена полимера, что означает большую термодинамическую устойчивость полимера по сравнению с циклом в условиях реакции. Изобарно-изотермический потенциал уменьшается с понижением энтальпии и повышением энтропии системы. Изменение термодинамических функций определяется разностью значений этих функций для конечного продукта реакции — полимера (—R—Z—)я и исходного вещества — циклического мономера  [c.137]

    ПОВЫШЕНИЕ ЭНТАЛЬПИИ И ЭНТРОПИИ [c.451]

    Другая характерная особенность жидкого состояния — близость величин потенциальной и кинетической энергий молекулы. Для кристаллического состояния (при температурах ниже температуры плавления) отношение кинетической энергии к потенциальной значительно меньше единицы, для газов оно значительно больше единицы, а для жидкостей близко к единице. Теплота плавления твердого тела в десятки раз меньше теплоты испарения при нормальной температуре плавления. В области температур, близких к температуре плавления, обнаруживается аналогия или близость свойств жидкости и твердого тела. При температуре плавления различия молярных объемов, энтальпий, энтропий и других термодинамических характеристик у жидкого и твердого состояний для многих веществ обычно не превышают 20%, а для отдельных веществ значительно меньше, тогда как различие термодинамических характеристик жидкого и газообразного состояний в этой области температур весьма значительно. Коэффициенты сжимаемости твердых тел и жидкостей находятся в пределах 1—0,01 ГПа , а у газов эта величина на 3—4 порядка выше. При нагревании жидкости от температуры плавления до температуры кипения многие ее свойства приближаются к свойствам насыщенного пара. Так, при нагревании плотность жидкости уменьшается, а плотность насыщенного пара увеличивается. С повышением температуры уменьшается теплота испарения. [c.223]

    Такой цикл, до некоторой степени, аналогичен применяемому в паро-технике циклу расширения с промежуточным перегревом, но имеется и весьма существенное различие. В то время как в паровых двигателях преследуется цель возможно большего увеличения работы за счет, некоторого увеличения основной затраты тепла, сопровождаемого повышением энтальпии пара, при построении холодильного цикла основной задачей является не возвращение части затрачиваемой на сжатие работы, играющее относительно незначительную роль, а возможно большее понижение конечной энтальпии хладоагента. Выполнение последнего требования при минимальном значении энтропии в конце процесса подготовки хладоагента исключает возможность промежуточного подогрева за счет получения тепла извне. Цикл может строиться только при промежуточном подогреве за счет дополнительного охлаждения сжатого газа и при условии рекуперации холода отходящих газов. [c.66]

    Возможно, одной из причин, обусловливающих повышение энтальпии активации при введении электроноакцепторного заместителя, являются значительные стерические препятствия, оказываемые сх-бензильной группой взаимодействию сильно сольватированного мети-лат-аниона о системой С-С=0. Электроноакцепторные заместители в бензильной группе увеличивают электрофильность третичного углеродного атома и усиливают указанное взаимодействие. При этом жесткость переходного состояния возрастает, что приводит к существенной десольватации нуклеофильного центра. Десольватация, требующая затраты энергии, вызывает увеличение требуемой для осуществления реакции энтальпии активации. В свою очередь, освобождение "замороженных" у нуклеофильного центра молекул растворителя приводит к возрастанию энтропии активации, которая становится менее отрицательной. [c.86]


    Полагая, что энтальпия и энтропия испарения не зависят от температуры, вычислите температуру кипения воды в скороварке при давлении внутри нее 2 атм. Какое значение для приготовления пищи имеет повышенное давление внутри скороварки  [c.152]

    Поскольку и в этом случае для каждой группы веществ нужно составить таблицы или графики для определения г, а также зависящих от г коэффициента летучести, теплоемкости, энтропии, энтальпии при повышенных давлениях, объем справочных данных, необходимых для проведения расчетов, велик. Поэтому, в основном, приводят таблицы или графики для наиболее распространенной группы веществ (2к=0,27) (см. рис. 1). Предложен ряд эмпирических приемов для перехода от найденных по этим таблицам или графикам г, у, СрР, 8р, ЛНр к аналогичным величинам для иных значений 2к (0,23 0,25 0,29) [3, 6]. [c.39]

    Известно, что согласно принципу Ле Шателье влияние изменения температуры на равновесие определяется знаком и величиной теплового эффекта процесса. Почему влияние температуры обусловлено энтальпией процесса, а не энтропийным чле-но-м TAS, ведь повышение температуры соответствует как росту самого члена TAS, так и в большинстве случаев росту энтропии рассматриваемой системы. [c.46]

    При сближении частиц на расстояние меньшее, чем удвоенная толщина адсорбционного слоя, происходит перекрытие (взаимопроникновение) адсорбционных слоев, и концентрация НПАВ в области перекрытия увеличивается по сравнению с ее значением в адсорбционном слое. При этом, если среда представляет собой хороший растворитель для вещества, образующего адсорбционный слой, возникает осмотическое да вление, подобное давлению набухания (рис. Х1П, 6). Это обуславливает приток жидкости из объема раствора в область перекрытия адсорбционных слоев и возникновение расклинивающего давления. Осмотическое давление, в зависимости от природы взаимодействия НПАВ и растворителя, может быть функцией изменения энтропии или изменения энтальпии системы в области перекрытия. В первом случае падение энтропии определяется тем, что в области перекрытия уменьшается число конформаций гибких цепей стабилизатора, что в конечном счете вызывает повышение агрегативной устойчивости. Во втором случае в области перекрытия некоторые контакты между молекулами воды и полярными группами НПАВ заменяются контактами между молекулами НПАВ, т. е. происходит дегидратация адсорбционного слоя. Это приводит к возрастанию энтальпии системы, вызывает отталкивание, т. е. также повышает агрегативную устойчивость системы. [c.411]

    Поверхностное натяжение жидкости с повышением температуры у.меньшается, т. е. до/дТ)р<0. Образование единицы площади новой поверхности сопровождается увеличением энтропии (Л5>0) и уменьшением энтальпии (АЯ<0). Изменение энтропии AS вычисляют по температурной зависимости поверхностного натяжения, иопользуя уравнение Гиббса — Гельмгольца [c.24]

    Энтальпийный и энтропийный факторы и направление процесса. Из рассмотрения уравнения AG = AH—TAS следует, что знак изменения энергии Гиббса и направление процесса определяется стремлением частиц объединиться в более сложные (агрегация), что уменьшает энтальпию, и стремлением частиц наоборот разъединиться (дезагрегация), что увеличивает энтропию. Повышение температуры в системе, с одной стороны, препятствует силам притяжения как межатомного, так и межмолекулярного, которые. способствуют упорядочению системы, с другой стороны, [c.212]

    По термодинамическим свойствам растворы классифицируют на идеальные и неидеальные. Идеальным называют раствор, в процессе образования которого уменьилается энергия Гиббса, возрастает энтропия, а объем, энтальпия, внутренняя энергия и теплоемкость не меняются. Невыполнение одного из этих условий приводит к образованию неидеального раствора. Идеальные растворы подчиняются законам Вант-Гоффа и Рауля, связывающих моляльную концентрацию раствора с такими его свойствами, как осмос, понижение давления пара растворителя над раствором, повышение температуры кипения и понижение температуры замерзания. Эти свойства называют коллигативными, поскольку они зависят только от концентрации, но не зависят от природы растворенного вещества. [c.23]

    Таким образом, наряду с уменьшением энтальпии (АЯ<0) направленность любого физического или химического процесса определяется и увеличением энтропии (А5>0), Для сопоставления этих величин необходимо выразить их в одинаковых единицах. Так как АН выражается в Дж/моль, а А5 в Дж/(моль-К), то необходимо умножить А5 на Т. Тогда можно говорить об энтальпийном АН и энтропийном ТАЗ факторах процесса. Умножение А5 на Т вполне правомерно, так как повышение температуры усиливает хаотическое движение частиц, т. е, увеличивает беспорядок. [c.46]

    Термодинамически понижение Т л с введением второго компонента можно объяснить, анализируя отношение Т пл —АНм1А8м- Действительно, введение второго компонента в системы смешанных поликарбонатов сопровождалось понижением степени кристалличности, что приводило к повышению энтальпии АНм и энтропии А8м. При этом температура плавления понижается вследствие большего изменения энтропии по сравнению с изменением энтальпии. Очевидно, что наибольшее понижение температуры плавления должно происходить при большом различии в структурах и кристаллизационной способности гомополимеров. [c.149]

    Фазовые переходы сопровождаются выделением или поглощением теплоты и значительным изменением энтропии. Если фазовый переход вещества совершается при повышении температуры (возгонка, плавление, испарение), то он сопровождается поглощением теплоты, и для него характерно увеличение энтальпии, Д//>0. Энтропия вещества в результате такого перехода возрастает, 5>0. Если переход совершается при понижении температуры (конденсация, сжижение, отвердевание), то он сопровождается выделением теплоты, и для него характерно Л//<0. Энтропия вещества при таком переходе понижается, Д5< 0. Принято при символе изменения энтальпии и энтропии указывать название (в сокращенном виде) соответствующих фазовых переходов, например ДЯисп, Л5пл. Кристаллические состояния одного и того же вещества могут различаться по [c.11]

    Согласно (16.4.2), повышение энтальпии и энтропии активного вещества изменяет константу равновесия реакции. Это следует учитывать, если активность твердой фазы высока. В качестве примера рассмотрим термическое разложение известняка СаСОз ii СаО+СОг- Каждой данной температуре соответствует вполне определенная степень диссоциации (равновесное давление СО2). Используя стандартные значения энтропии, можно подсчитать константу равновесия (равновесное давление) этой реакции. Фактически равновесное давление определяется активностью обоих твердых компонентов. Экспериментально получаются более высокие равновесные давления, если исходят из активного СаСОз, или меньшие давления, если в активном состоянии находится СаО. Величина константы диссоциации (или соответствующего давления СО2) зависит от степени активности (рис. 16.9). С повышением степени измельчения исходного известняка (СаСОз) увеличиваются давление и степень диссоциации. [c.456]

    Значение величин I и 5 для дегазированной нефти, нефтегазовых систем и газа с повышением температуры и давления увеличивается. Особо можно выде ить диапазон возрастания энтальпии и энтропии для газовых потоков. [c.81]

    Количественная оценка энтальпии и энтропии прово дилась по формулам (П.42), (11.45), (П.71) и (П.73) Для повышения точности и взаимопроверки каждое зна чение величин г и 5 определялось двумя методами [c.93]

    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    Таким путем, зная для рассматриваемого соединения Soga можно рассчитать для него энтропию при других температурах, пользуясь соответствующими данными для трех других соединений, образующих с ним две аналогичные пары однотипных соединений. Этот путь повышения точности расчетов применим и для определения других свойств, например энтальпии, теплоемкости. [c.280]

    Процесс сжатия во всех случаях представляется линиями 1-2. В общих случаях на рис. 10-5,а и б сжатие (повышение давления) сопровождается изменением энтропии и иовышенпсм температуры газа. При этом увеличивается энтальпия газа. [c.287]

    Говоря об устойчивых (или неустойчивых) конформациях в конфор-мационном анализе, имеют в виот относительную термодинамическую устойчивость, определяемую значениями конформационной свободной энергии /103/, В условиях равновесии в алкаке существует бесчисленное множество конформаций. Однако основное конформационное состояние молекул определяется стереохимическими особенностями лшяь некоторых, термодинамически наиболее устойчивых поворотных изомеров /102/, Если конформационную свободную энергию определять только значением энтальпии конформационного перехода АН, пол .-гая изменение энтропии равным нулю, то наиболее устойчивой будет трансоидная конформация. Образование скошенных форм может оказаться предпочтительней только вследствие изменения энтропии. При повышении температуры и удлинении молекулы роль энтропийного фактора растет, В наших расчетах свободная энергия конформеров определялась как разность энергии данной конформации и полностью трак-соидной. [c.147]

    Если исходить из представлений, используемых при вычислении идеальной энтропии смешения изодиаметрических молекул, зависящей только от числа смешивающихся молекул, то повышение молекулярного веса одного компонента должно приводить к уменьшению числа молекул этого компонента в I г системы и, следовательно, к уменьшению энтропии смешения данных весовых количеств обоих веществ. Энтальпия ( или внутренняя энергия) не должна изменяться, поскольку весовые количества смешивающихся компонентов, а следовательно, и число взаимодействующих атомных групп не изменяются. Отсюда следует, что по мере повышения молекулярного веса полимера значение энтропийного члена TAS в уравнениях (XIV, 3) и (XIV, 4) будет неограниченно уменьшаться и определяющее значение должен приобрести энергетический член АН или АН. Однако при исследовании растворения высокомолекулярных веществ с цепными молекулами было [c.439]

    Некоторые жидкие кристаллы могут находиться и в смектическом, и в нематическом состояниях. Фазовые превращения таких веществ из кристаллического состояния в жидкое при повышении температуры проходят по схеме кристалл смектиче-ская фаза->-нематическая фаза->-жидкость. Все эти превращения—фазовые переходы первого рода, сопровождающиеся изменением внутренней энергии, плотности и энтропии системы. Энтальпия перехода жидкого кристалла в жидкость в десятки раз меньше энтальпии плавления, а энтальпия перехода смектической фазы в нематическую еще меньше. [c.166]

    Энтальпийный и энтропийный факторы и направление процесса. Из уравнения ДС == АИ — TAS следует, что знак изменения энергии Гиббса и направление процесса определяются стремлением частиц объединиться в более сложные (агрегация), что уменьшает энтальпию, и стремлением частиц, наоборот, разъединиться (дезагрегация), что увеличивает энтропию. Повышение температуры в системе, с одной стороны, препятствует силам межатомного и межмолекулярного притяжения, которые способствуют упорядочению системы, с другой стороны, усиливает хаотичность движения. При очень высоких температурах, как правило, значение TAS становится значительно больше АН и тогда значение и знак AG определяются членом TAS. Следовательно, при очень высоких температурах энтропийный фактор (т. е. стремление частиц к разъединению) доминирует над энтальпий-ным (стремлением частиц к образованию связей). Поэтому для осуществления процессов ассоциации молекул и синтеза различных веществ обычно нужен низкотемпературный режим, а реакции разложения, как правило, протекают при достаточно высоких температурах. Следовательно, знак AG и направление процесса определяются конкуренцией энтальпийного АН и энтропийного TAS факторов. Суммарный эффект этих противоположных тенденций в процессах, идущих при Т = onst и р = onst, отражает изменение энергии Гиббса. [c.245]

    Агрегат из молекул ПАВ образуется из углеводородных цепей, а гидрофильные части молекул располагаются на внешней поверхности мИцеллы. Основной причиной возникновения в водных растворах агрегатов из углеводородных цепей являются когезионные силы между молекулами воды, которые больше, чем взаимное притяжение молекул воды и углеводородных цепей. Молекулы воды как бы вытесняют углеводородные цепи из раствора, что сопровождается уменьшением энтальпии системы. Образованию мицелл препятствуют силы взаимного отталкиваиия гидрофильных частей молекул ПАВ. Для ионных ПАВ это отталкивание обусловлено электростатическим взаимодействием одноименно заряженных ионогенных групп,, для НПАВ — осмотическими силами, которые возникают из-за повышения концентрации оксиэтиленовых цепей в периферической части мицеллы. Кроме того, образованию мицелл препятствует падение энтропии из-за возрастания при агрегации  [c.405]


Смотреть страницы где упоминается термин Повышение энтальпии и энтропии: [c.190]    [c.20]    [c.20]    [c.91]    [c.270]    [c.93]    [c.100]    [c.231]    [c.349]   
Смотреть главы в:

Физико-химическая кристаллография -> Повышение энтальпии и энтропии




ПОИСК





Смотрите так же термины и статьи:

Энтальпия в Энтропия



© 2025 chem21.info Реклама на сайте