Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура серы в свободном виде

    Связь периодичности с размерами атомов и ионов известна с давнего времени. Еще Лотар Мейер представил кривую периодичности атомных объемов, показанную на рис. 3-2. Она, кстати, принесла ему большую славу, чем его периодическая таблица, построенная на основе физических свойств элементов в свободном виде. Таким образом, атомный объем, определяемый простым делением массы моля атомов (в граммах) на плотность, изменяется периодически с изменением атомного веса элементов, и это тем более удивительно, что плотность элемента в свободном виде является функцией таких факторов, как физическое состояние, аллотропия, температура и вид кристаллической структуры. Например, при расчете атомного объема олова может возникнуть вопрос, какое значение плотности [7, 31 (белая форма) или 5,75 (серая форма) ] использовать. Аналогично обстоит дело и с углеродом 3,51 (алмаз) или 2,25 (графит)]. Именно поэтому размеры атомов или ионов сейчас рассматривают в единицах их радиусов. [c.107]


    Первая попытка сопоставления атомных размеров была сделана на основе атомных объемов. Для этого послужила кривая атомных объемов Лотара Мейера, изображенная на рис. 3-2, принесшая ему больше славы, чем его периодическая система, основанная на физических свойствах элементов. Как было сказано, атомный объем получается путем деления атомного веса элемента на плотность элемента в свободном виде, и, следовательно, он верен только в том случае, если достоверна плотность. Но плотность элемента в свободном виде зависит в большей степени от его физического состояния, кристаллической структуры, аллотропического видоизменения и температуры, при которой определена плотность. Например, плотность белого олова 7,31, а серого — 5,75. Однако несмотря на все возможные факторы, которые могут влиять на атомный объем, удивительно, что кривая атомных объемов вполне правильно показывает периодичность свойств. Так как невозможно выделить отдельно атом или ион и измерить их радиус, следует полагаться на измерения, сделанные на большом количестве вещества, и допустить, что атомные модели правильны в отношении поведения атомов и ионов во всей структуре вещества. Вскоре стало ясно, что на соответствующие расчеты влияют многие факторы, в числе которых надо упомянуть характер связи (кратная ли связь или простая), степень ионного или [c.104]

    Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) как функции главного в химии аргумента — молекулярной структуры. Подобные функциональные зависимости в принципе невозможно установить на примере одного соединения. Чтобы изучить или хотя бы обнаружить функциональную зависимость, надо проварьировать аргумент, т.е. изучить серию соединений различной структуры. Изменения структуры органического соединения могут происходить только дискретно, скачками, и какими бы минимальными они ни были, они в той или иной мере сказываются на всем комплексе свойств вещества. Поэтому любое органическое соединение представляет собой неповторимую химическую индивидуальность с единственной конкретной структурой и единственным набором свойств. Именно поэтому закономерности типа структура — свойство могут быть выражены в количественном виде лишь для ограниченного круга задач и объектов (как, например, это удается сделать в гамметовских корреляциях свободной энергии или в рассмотренном выше случае оценки зависимости цветности азокрасителей от природы хромофоров). В большинстве же случаев эти закономерности носят чисто качественный характер, и в поиске вещества с заданными свойствами неизбежен эмпирический подход, который предполагает синтез и всестороннее исследование серий родственных соединений с планомерно варьируемыми свойствами.  [c.53]


    Первая попытка сопоставления атомных размеров была сделана на основе атомных объемов. Для этого послужила кривая-атомных объемов Лотара Мейера, изображенная на рис. 3-2. принесшая ему больше славы, чем его периодическая система основанная на физических свойствах элементов. Как было сказано, атомный объем получается путем деления атомного веса элемента на плотность элемента в свободном виде, и, следовательно, он верен только в том случае, если достоверна плотность. Но плотность элемента в свободном виде зависит в большей степени от его физического состояния, кристаллической структуры, аллотропического видоизменения и температуры, при которой определена плотность. Например, плотность белого олова 7,31, а серого — 5,75. Однако, несмотря на все возможные факторы, которые могут влиять на атомный объем, удивительно, что кривая атомных объемов вполне правильно показывает периодичность свойств. [c.108]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]

    Структура серы в свободном виде [1] [c.378]

    В отличие от нефтяных коксов в саже сера может находиться в химически связанном и в свободном (физически связанном) виде. Эксперименты, проведенные во ВНИИ НП [35], показали, что ие вся сера переходит из сырья в сажу. Удаление из фенольного сернистого экстракта каталитического газойля серы на 25—30% не оказало заметного влияния на ее содержание в саже. Только при глубоких степенях гидроочисткн (75—80%), когда начинает удаляться сера, расположенная в ароматических структурах, содержание серы в саже уменьшается. [c.120]

    ТЕПЛОТА СГОРАНИЯ (топлива) — количество теплоты, выделяющейся при полном сгорании топлива в кислороде (раньше эта величина наа. теплотворной способность ю). Т. с. определяют нри нсследованпи топлива, для к-рого эта величина является одним из вая нейших показателей его практич. ценности. Томи же методами, что и для топлив, Т. с. определяют и при исследовапии органич. веществ с целью получения данных об их структуре (см. Теплота образования). При полном сгорании в кислороде органич. вещества его Т. с. характеризуется суммой тепловых эффектов реакций превращения углерода в углекислый газ, водорода — в воду, серы — в серный ангидрид, выделения азота и галогенов в свободном виде. Т. с. измеряют в джоулях 1 Зж= = 1 ньютон-1 метр=(1и-1 м), или в калориях (1 кал= =4,1868 дж). Т. с., отнесенная к единице количества вещества, наз. удельной теплотой сгорания. В зависимости от выбранной для измерения единицы количества вещества удельную Т. с. обозначают для твердого и жидкого вещества — кдж1кг, кал г, ккал кг, для газообразного вещества — кдж/лА, шт ккал , с фиксацией условий (темп-ра, давление) замера объема газа. Обычно берется кубич. метр сухого газа, измеренный нри 20° и 760 мм рт. ст. (ГОСТ 2939—63). [c.39]

    Исследованы НАС промышленной западно-сибирской нефти [15, 36]. Они представлены концентратами АК-4 и АК-5 (см. табл. 14). По сравнению с АК-5 в концентрате АК-4 больше содержится ареновых структур, азота и серы, меньше — кислорода. По результатам потенциометрического титрования соединения АК-4 характеризуются как слабоосновные, которые можно условно отнести к НАС. Пятая часть выделенных кислородных соединений СС представлена в основном тиофеновыми производными. В концентратах АК-4 и АК-5 содержалось относительно мало НАС, поэтому они были хроматографически сконцентрированы на силикагеле и разделены на оксиде алюминия (табл. 37). В пентано-бензольной фракции АК-4 сконцентрировались преимущественно арены и СС. Основная часть выделена спиртобензолом и бензолом. С увеличением полярности элюентов уменьшается протонодефицитность и увеличивается кислотность соединений. В бензольных фракциях сконцентрированы только НАС, а в спиртобензольной — основные и слабоосновные. Это несоответствие исходному концентрату можно объяснить, вероятнее всего, распадом ассо-циатов при хроматографическом разделении из разбавленных растноров. Можно предположить, что в образовании таких ассоциатов АС принимают участие вещества кислого характера. В АС присутствуют пирролы (поглощение в области 3460 см , проявляющееся в виде отдельного пика при разбавлении GI4), свободные группы ОН фенолов (3630 см ), пиридины (перегиб при 1560 см ), N-замещенные амиды (1600—1700 см в отсутствие поглощения при 3450—3400 м ). [c.56]


    Как мы уже отмечали, молекулы воды очень склонны к ассоциации. Поэтому в парах воды разной плотности при изменении температуры молекулы воды образуют различные по размеру комплексы. Чаще всего, говоря о парах воды, имеют в виду пары низкой плотности — 10 г см и ниже. При этих условиях расстояние между молекулами воды в среднем 30 А, что на порядок выше радиуса их специфического взаимодействия. Благодаря большой пространственной разделенности молекулы паров воды могут совершать свободные поступательные и вращательные движения. Последние, взаимодействуя с колебательными уровнями молекулы, приводят их к расщеплению [63]. В результате этого спектр паров воды вместо широких (несколько десятков обратных сантиметров) колебательных полос, характерных для веществ в конденсированном состоянии, оказывается состоящим из очень большой серии линий с полушириной 0,05—0,5 см [251. Поэтому, исследуя пары и газы при достаточной разрешающей силе прибора, мы всегда обнаруживаем четкую вращательную структуру. Примером ее может служить спектр паров воды при давлении 15 мм рт. ст. и температуре 25° С, в диапазоне 3697—3544 см , полученный на приборе с разрешением 0,7 см (рис. 37). [c.117]

    Вид спектра ЭПР зависел от концентрации атомов и степени отжига образца. При высокой концентрации атомов (серии П и П1) он представлял собой синглет с -фактором, близким к -фактору свободного атома, при низких концентрациях и высоких температурах— это триплет, с постоянной сверхтонкого взаимодействия 12,6 МГц и заметной сателлитной структурой, что согласуется с известными литературными данными [2, 4]. [c.88]

    Олово и его соединения. Олово — один из не многих металлов, известных человеку еще с доисториче ских времен. В свободном виде олово существует в тре аллотропических модификациях (аналогия с углеродом) Кроме обыкновенного белого олова — -форма — с плот ностью 7300 кг/м известно серое олово с плотностьк 5750 кг/м , называемое а-формой. Серое олово устой чиво при температурах ниже 13,2 °С, а белое — при тем пературах выше 13,2 °С. При низкнх температурах изме няется кристаллическая структура олова. При перекри сталлизации на морозе олово изменяется в объем  [c.454]

    Сульфиды. Дисульфид свинца неизвестен, но остальные элементы при непосредственном взаимодействии их в свободном виде с серой образу ют дисульфиды MSo. Бесцветные кристаллические соединения крелшия и германия гидролизуются водо . Структуры SiS и GeSo представляют собой цепи нз тетраэдров MS4, связанною атомами серы (с.м. стр.. 389). SnS. имеет решетку типа СаЬ, каждый атом Sn окружают шесть соседиiix атолюв S. [c.331]

    Сульфиды. Дисульфид свинца неизвестен, но остальные элементы при непосредственном взаимодействии их в свободном виде с серой образуют дисульфиды М5,. Бесцветные кристаллические соединения кремния и германия гидролизуются водой. Структуры 515з и Ое5, представляют собой цепи из тетраэдров М54, связанные атома.ми серы (см. стр. 389). 5п5.2 и.меет решетку типа Са1,, каждый атом 5п окружают шесть соседних атомов 5. [c.331]

    Чугун — высокоуглеродистый нековкий сплав железа с углеродом (обычно 3—4,5%), содержащий примеси марганца (до 3%), кремния (до 4,5%), серы (не более 0,087о) и фосфора (до 2,5%), отличается хорошими литейными свойствами. В зависимости от состава и скорости охлаждения чугуна углерод присутствует в его структуре либо в виде цементита — белый чугун, либо (полностью или частично) в виде свободного графита — серый чугун. [c.30]

    Металлы, относящиеся к легкой и тяжелой платиновым триадам, встречаются довольно редко, и их реакции еще недостаточно полно изучены. Все они обладают сравнительно низкой реакционной способностью и в природных условиях встречаются в виде свободных металлов. Наиболее важное значение для них имеют состояния окисления +2, 4- 3 и 4-4, находясь в которых эти металлы образуют в растворе октаэдрические или плоские квадратные комплексы. Комплексные ионы Р1(1У) и 1г(П1) имеют структуры октаэдра. Комплексы Р1(П) имеют плоское квадратное строение. Ион тетрахлороплатината(П), Р1С1 , обнаруживает большую склонность к связыванию с серой в белках и используется для получения производных белков, включающих тяжелые атомы, с целью проведения их рентгеноструктурного анализа. [c.446]

    Для доказательства и обоснования предложенной фуллеренной модели структуры углеродистых сплавов проводились исследования на образцах из серого чугуна марки СЧ25. Это связано с тем, что такие чугуны содержат большое количество свободного углерода в виде пласгинчатых скоплений, в которых вероятно присутствие фуллеренов. [c.29]

    Кремний никогда не встречается в природе в свободном состоянии, однако на его долю приходится около 28% состава земной коры, куда он входит в виде 8102 и других силикатных соединений. Элементарный кремний получают восстановлением 8102 или 81С14. При восстановлении 8102 углеродом в электродуговой печи получается кристаллический кремний серого или серебристо-белого цвета. Структура кристаллического кремния аналогична структуре алмаза — каждый атом кремния связан с четырьмя соседними атомами а-связями. Все эти а-связи располагаются под тетраэдрическими углами друг к другу и образуют непрерывный пространственный каркас структура кристаллического кремния относится к кубической системе (см. рис. 10.16). Однако, поскольку длина связей 81 — 81 на 65% больше длины связей С — С, кристаллы кремния значительно уступают алмазу по твердости. [c.400]

    Очевидно, при вулканизации смесей без НДФА протекают процессы двух видов. Основным является многостадийный гетерогенный процесс ускоренной серной вулканизации, в результате которого образуются сравнительно устойчивые диалкенильные полисульфидные поперечные связи [3]. Наряду с этим сера присоединяется к свободным радикалам, образующимся в НК в результате распада гидроперекисей, слабых связей и др. [88, с. 164]. Диффундирующая в массе каучука свободная сера концентрируется в этих центрах [90] и, реагируя с каучуком, обусловливает образование вулканизационных структур с поперечными связями алкенилалкильного типа высокой сульфидности [3]. Прочностные свойства исследованных вулканизатов определяются значением l/vW и практически не зависят от химического строения полисульфидных связей. Однако алкенилалкильные полисульфидные связи легко перегруппировываются при перевулканизации, что вызывает внутримолекулярную модификацию и ухудшение прочностных свойств вулканизатов. [c.237]

    Отбел — твердые места в отливках, характеризующиеся светлой лучистой поверхностью излома, обусловленной соде ржа-нием структурно-свободного цементита. Отбел образуется при заливке металла для тонкостенных изделий во влажную форму, а также в случае применения при шихтовке ржавленного чугунного лома или перегорелых колосников. Очень часто отбеленные йеста получаются от чрезмерного увлажнения отдельных мест формы. Поскольку эти отбеленные места имеют другую структуру, чем вся остальная поверхность отливки, они обладают и другими физическими и механическими свойствами и, в частно-]сги, другим коэфициентом теплового расширения. Это и является причиной растрескивания изделий при обжиге. Примером таких трещин служат и накрайники. Появлению отбела способствует повышенное содержание серы и марганца в чугуне при недостаточном содержании кремния. Если отбеленные места имеют очень небольшие размеры и рассеяны по всей отливке в виде мелких пятен, то во время обжига происходит разложение цементита на феррит и чрезвычайно активный углерод отжига. Вследствие этого в эмали образуются пузырьки и поры. Довольно часто эти отбеленные места находятся на поверхности изделий в виде очень тонкой Пленки, которая является причиной пористости эмали. Изделия, имеющие такой дефект, подлежат обжигу вчерне до эмалирования с последующей очисткой песком. [c.280]

    Линия РК называется линией перлитного или аустенитного превращения. На диаграмме показаны также структуры всех промежуточных сплавов. Сплавы с содержанием углерода до 2,0% называются сталями, с большим содержанием углерода — чугу-нами. Если в чугуне значительная часть углерода химически связана с железом в виде РезС, то такой чугун называется белым. При медленном охлаждении расплавленного чугуна часть РвдС распадается с выделением свободного углерода (графита). Такой чугун называется серым. Диаграмма состояния в этом случае несколько меняется. Белый чугун обладает большой твердостью, но хрупок и поэтому не обрабатывается на станках. Он идет в передел на сталь. Серый чугун более мягкий, менее хрупкий и хорошо обрабатывается на станках. [c.434]

    Слабыми электрофилами, способными к реакциям присоединения к углерод-углерод двойной связи, являются соединения двухвалентной серы [23]. При их взаимодействии с непредельными соединениями в промежуточную стадию образуются циклические соединения, структура которых зависит от растворителя. В неполярных растворителях получаются сульфураны (ХХХП), в сильнополярных— эписульфониевые соли (ХХХП1) в виде разного типа ионных пар или даже свободных ионов  [c.230]

    Плечо около 3640 (ОН) или 2680 см" (00) указывает на то, что в этом случае в сетке гидратных структур имеется много свободных групп ОН или 00, т. е. в полистиролтиофосфоновой кислоте сетка гидратной структуры очень сильно разорвана. Этот результат объясняется таким же образом, как и в предыдущем разделе. Кроме того, следует иметь в виду, что атом серы имеет меньшую протоноакцепторную способность по сравнению с атомами кислорода [275]. Таким образом, природа сетки гидратных структур в данном случае может быть объяснена влиянием структуры анионов. [c.318]

    Сурьма образует сульфиды и ЗЬ- З,, оба сульфида люжно получить либо при непосредственном взаимодействии элементов в свободном состоянии, либо осаждением сероводородом из растворов ЗЬ" или ЗЬ . Подобно аналогам мышьяка, они растворимы в избытке сульфида с образованием анионных тио-комплексов. ЗЬ Зд, так же как ЗЬ.,Зез и В1-23з, пмеет структуру ленточного полимера, в котором каждый атом серы и сурьмы связан с тремя атомами противоположного вида с образованием связанных пирамид ЗЬЗз и ЗЗЬз (см. стр. 389). [c.357]


Смотреть страницы где упоминается термин Структура серы в свободном виде: [c.445]    [c.300]    [c.356]    [c.79]    [c.300]    [c.345]    [c.356]    [c.104]    [c.38]    [c.7]    [c.53]    [c.501]    [c.437]    [c.248]    [c.113]    [c.345]    [c.139]    [c.124]    [c.217]   
Смотреть главы в:

Современная неорганическая химия Часть 2 -> Структура серы в свободном виде

Современная неорганическая химия Часть 2 -> Структура серы в свободном виде




ПОИСК





Смотрите так же термины и статьи:

Свободная сера



© 2025 chem21.info Реклама на сайте