Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эволюция путей аэробного метаболизма

    На следующем этапе, который начался примерно 2-10 лет назад с появления цианобактерий, возникли организмы, способные использовать воду в качестве источника водорода для восстановления СО2. Это привело к развитию второй фотосистемы, включенной последовательно с первой, что позволило преодолеть значительный разрыв в редокс-потенциалах HjO и NADPH (см. рис. 9-49). Этот эволюционный шаг имел далеко идущие биологические последствия. Впервые появились организмы, обладавшие минимальными потребностями в химических веществах окружающей среды, и эти организмы могли развиваться по путям, недосягаемым для примитивных фотосинтезирующих бактерий, которые нуждались в HjS и органических кислотах как донорах электронов. В результате накопилось большое количество органического материала, синтезированного живыми клетками, и впервые в атмосферу начал поступать кислород. Это открыло путь для развития бактерий и более сложных форм жизни, получающих АТР за счет аэробного метаболизма, т.е. использующих энергию, высвобождаемую при расщеплении углеводов и других восстановленных органических молекул до Oj и HjO. На рис. 9-58 дана схема предполагаемой эволюции рассмотренных вьпле механизмов. [c.52]


    Брожение не исчерпывает всех возможностей получения энергии этой группой прокариот. Хотя гликолитическое расщепление глюкозы с образованием в качестве обязательного промежуточного соединения при брожении пировиноградной кислоты является основным путем разложения глюкозы, кроме этого пути в группе пропионовых бактерий обнаружен окислительный пентозофосфатный путь, реакции цикла трикарбоновых кислот (ЦТК), активное флавиновое дыхание и окислительное фосфорилирование, сопряженное с электронтранспортной системой. Вклад каждого из этих путей в общий энергетический метаболизм зависит как от вида бактерий, так и от конкретных внешних условий. Эволюция пропионовых бактерий определенно шла по пути приспособления к аэробным условиям. У некоторых видов обнаружен эффект Пастера в присутствии кислорода воздуха переключение с брожения на дыхание. Пропионовые бактерии могут синтезировать гемсодержащие белки. В их клетках обнаружены цитохромы. [c.199]

    Эволюция эукариот. Эукариотические клетки, видимо, возникли лишь тогда, когда в атмосфере появился кислород. Все эукариоты, за очень малым исключением,-аэробные организмы. Прокариоты занимали много различных экологических ниш. Выработка разнообразных типов метаболизма у прокариот была, по-видимому, обусловлена простой структурой клетки, высокоразвитыми системами регуляции, быстрым ростом и наличием нескольких механизмов переноса генов. На пути дальнейшей эволюции прокариот стояли непреодолимые трудности, связанные прежде всего с малыми размерами генома, его гаплоидным состоянием и малой величиной клеток. Новая окружающая среда с аэробными условиями позволяла получать больше энергии, но для ее использования нужны были более крупные клетки, широкие возможности структурной дифференцировки и соответственно во много раз больший [c.521]

    Эволюция путей аэробного метаболизма [c.52]

    Биологическая расплата за эти очевидные преимущества состоит в полной зависимости летательных мышц насекомого от аэробиоза. Это, возможно, позволяет нам значительно глубже понять характер эволюционных сил, формирующих клеточный метаболизм. По-видимому, наша оценка данной адаптации как стратегии избегания несколько упрощает действительность. Насекомые, может быть, и в самом деле избегают проблемы недостатка Ог или сводят ее к минимуму, но вместе с тем ясно, что эволюция энергетического обмена их клеток характеризовалась более активной стратегией — она шла по пути использования почти безграничных резервов атмосферного кислорода. Выработав систему каналов , связывающих клетки с наружным воздухом, насекомые извлекли максимальную пользу из высокого содержания в нем О,. Именно эта практически неограниченная доступность кислорода привела к развитию аэробной системы энергетического обмена, не имеющей себе равной по эффективности в живой природе. [c.92]


    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]


Смотреть страницы где упоминается термин Эволюция путей аэробного метаболизма: [c.231]    [c.215]   
Смотреть главы в:

Основы энзимологии -> Эволюция путей аэробного метаболизма




ПОИСК





Смотрите так же термины и статьи:

Метаболизм

Метаболизма пути

аэробные



© 2025 chem21.info Реклама на сайте