Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расщепление углеводов

Рис. 18.1. Расщепление углеводов в желудочно-кишечном тракте. Транспорт глюкозы в кровь Рис. 18.1. Расщепление углеводов в <a href="/info/511151">желудочно-кишечном тракте</a>. <a href="/info/327743">Транспорт глюкозы</a> в кровь

    Известны также способы получения ацетона путем бактериального расщепления углеводов (крахмала, сахаров, мелассы), причем в качестве побочных продуктов образуются бутиловый или этиловый спирт [2—4]. Ацетон и бутиловый спирт получаются в мольном соотношении от 2 1 до 3 1. [c.140]

    С помощью изотопной техники были получены также новые важные данные о механизме действия энзимов. При биологическом расщеплении углеводов после лимоннокислого цикла получается в качестве промежуточного продукта лимонная кислота, которая затем превращается в а-кетоглутаровую кислоту (ср. стр. 413). Как было указано [c.1147]

    Второй метод расщепления углеводов был разработан Руффом (1899). Метод состоит в окислении альдоновой кислоты до 2-кетоаль-доновой кислоты (альдозулоновой), которая превращается далее в альдозу, содержащую на один атом углерода меньще, чем исходная альдоза,. [c.543]

    Указанный механизм крекирующего воздействия катионов на полиоксисоединения должен быть, очевидно, общим и для щелочного расщепления углеводов с образованием молочной кислоты [50, 54]. В этом случае расщепление происходит в растворе под действием больших количеств гидроокиси щелочноземельного металла (например, 4—6 моль крекирующего агента на 1 моль сахарозы [53]), и гидроокись является стехиометрическим компонентом реакции. Вопрос о соотношении гомогенных и гетерогенных стадий при получении молочной кислоты из углеводов обычно не ставится (однако при 20%-ной концентрации глюкозы в растворе в нем растворяется всего около 0,4 моль СаО на 1 моль глюкозы [65] остальная гидроокись находится в виде суспензии, и поэтому не исключено воздействие частиц как твердого катализатора реакции). [c.93]

    Нахождение в природе. Ацетон содержится в продуктах сухой перегонки дерева, продуктах бактериального расщепления углеводов, высшие кетоны — в эфирных маслах, сыре, прогорклых маслах. [c.288]

    При расщеплении углеводов с целью получения водородсодержащего газа берут 2,5— 10 молей водяного пара на I г атом углерода [c.125]

    Таким образом, при гидрогенолизе и при щелочном расщеплении углеводов катион координируется, очевидно, с грео-располо-женными гидроксилами и оттягивает на себя заряд с кислородных атомов, чем способствует дальнейшему уменьшению электронной [c.89]

    Основной путь, по которому происходит расщепление углеводов, — это путь Эмбдена — Мейергофа — Парнаса , или гликолиз (на рис. [c.85]

    Альтернативный механизм — комплексообразование с катионом и расщепление углевода происходит в растворе, осколки адсорбируются на гидрирующем катализаторе и гидрируются до низших полиолов [66]. [c.93]

    Содержание АТФ и креатинфосфата в сердечной мышце ниже, чем в скелетной мускулатуре, а расход АТФ велик. В связи с этим ресинтез АТФ в миокарде должен происходить намного интенсивнее, чем в скелетной мускулатуре. Для сердечной мышцы теплокровных животных и человека основным путем образования богатых энергией фосфорных соединений является путь окислительного фосфорилирования, связанный с поглощением кислорода. Регенерация АТФ в процессе анаэробного расщепления углеводов (гликолиз) в сердце человека практического значения не имеет. Именно поэтому сердечная мышца очень чувствительна к недостатку кислорода. Характерной особенностью обмена веществ в сердечной мышце по сравнению со скелетной является также то, что аэробное окисление веществ неуглеводной природы при работе сердечной мышцы имеет большее значение, чем при сокращении скелетной мышцы. Только 30—35% кислорода, поглощаемого сердцем в норме, расходуется на окисление углеводов и продуктов их превращения. Главным субстратом дыхания в сердечной мышце являются жирные кислоты. Окисление неуглеводных веществ обеспечивает около 65—70% потребности миокарда в энергии. Из свободных жирных кислот в сердечной мышце особенно легко подвергается окислению олеиновая кислота. [c.656]


    Существует много бактерий, способных разлагать сахар с образованием молочной кислоты. Бухнер показал, что они содержат энзимы, лактацидазы, вызывающие расщепление углеводов. При этом в зависимости от природы бактерии и сахара образуется либо рацемат, либо одна из двух оптически активных форм молочной кислоты. [c.323]

    Следует отметить, что для получения максимального выхода глицерина предпочтительнее 1-й или 3-й вариант, так как появление в растворе осколков от щелочного расщепления углевода приведет к образованию наряду с глицерином также и дополнительных количеств пропиленгликоля и молочной кислоты. [c.94]

    Вопрос о влиянии природы крекирующего агента подробно рассмотрен в гл. 3 там же показано, что максимальный выход глицерина достигается при добавлении 0,07—0,13 моль гидроокиси щелочноземельного металла на 1 моль глюкозы это соответствует 2—4% СаО или 6—11% ВаО к углеводам. Оптимальная дозировка крекирующего агента может изменяться в зависимости от других факторов, определяющих скорость гидрирования. Общим правилом является необходимость достижения баланса скоростей расщепления углеводов и гидрирования образующихся осколков [31, 49, 50]. Поскольку на скорость гидрирования воздействуют все рассматриваемые факторы, в том числе и дозировка щелочных крекирующих агентов (через pH среды), то заранее предсказать оптимальные концентрации гидроокиси кальция или бария невозможно они определяются при экспериментальной оптимизации процесса гидрогеиолиза. [c.121]

    Для этой цели ему нужны горючее и кислород. Роль горючего выполняют продукты расщепления углеводов и жиров, а кислород организм получает из воздуха. [c.447]

    Процессы брожения имеют большое значение в промышленности. Биохимические процессы, происходящие под влиянием ферментов, в ряде производств используются с практической целью. В организмах высших животных непрерывно протекают процессы биохимического расщепления и синтеза моносахаридов. При мышечном сокращении, в результате расщепления углеводов, образуется молочная кислота, а также ряд других продуктов. [c.338]

    Основной характерной особенностью процесса расщепления углеводов по Смиту является более высокая чувствительность к кислотному гидролизу гликозидной связи в восстановленных продуктах периодатного окисления, чем в исходных соединениях. [c.112]

    Поскольку при полном обороте цикла трикарбоновых кислот расход каждой молекулы щавелевоуксусной кислоты компенсируется генерированием новой ее молекулы, убыли щавелевоуксусной кислоты при работе цикла в конечном итоге не происходит. Однако щавелевоуксусная кислота активно включается в другие метаболические пути. Происходящие при этом потери щавелевоуксусной кислоты могут быть компенсированы ее синтезом из пирувата и СО2 в реакции, использующей АТР в качестве источника энергии. На рис. 7-1 реакция показана штриховой линией, направленной от пирувата в правый угол внизу. Сам же пируват образуется при расщеплении углеводов, таких, как глюкоза. [c.84]

    Уксусная кислота, включенная в цикл трикарбоновых кислот, полностью окисляется в двуокись углерода и воду, а щавелевоуксусная кислота вновь регенерируется. Уксусная кислота образуется при различных процессах метаболизма и включается в ацетил-КоА при участии АТФ (см. выше). Другими источниками образования ацетил-КоА является пировиноградная кислота — важнейший продукт окислительного расщепления углеводов в организме—или высшие жирные кислоты, подвергающиеся р-окислительному расщеплению. [c.90]

    Общая схема третьего пути расщепления углеводов эубактериями представлена на рис. 67. [c.259]

    ГЛИКОЛИЗ (от греч. gly kys-сладкий и lysis-разложение, растворение, распад), анаэробное (без участия Oj) негидро-литич. расщепление углеводов (гл. обр. глюкозы) в цитоплазме под действием ферментов, сопровождающееся синтезом АТФ и заканчивающееся образованием молочной к-ты (см. рис.). [c.580]

    В отличие от термического процесса, в котором, как указывалось выше, основной реакцией является расщепление углеводо-]1одов, каталитический процесс характеризуется преобладанием дегидрогенизации, при которой получаются непредельные углеводороды с тем же числом атомов, что и у исходного углеводорода. Роль реакций, сопровождающихся разрывом связи С—С, в случае каталитического процесса незначительна, в связи с чем выход непредельных углеводородов приближается к теоретическому. [c.64]

    Синтетически это соединение получепо путем фосфорилирования тиамина. Витаминозное действие аневрина, его незаменимость для организма тоже связаны с тем, что он необходим для расщепления углеводов. Антиневритное действие кокарбоксилазы приблизительно вдвое сильнее антиневритного действия самого аневрина. [c.893]

    ЕНОЛАЗА — фермент, широко распространенный в природе, присутствует во всех клетках, способен осушествлять анаэробное расщепление углеводов, снабжающее энергией живые клетки, ЕНОЛЫ (от окончаний ей и ол , [c.93]

    В процессах к талихи.ческога крекинга расщепление углеводо- родов происходит на катализаторах при более низких температурах (450—500 °С), чем газофазный крекинг, и при давлении, близ- [c.68]

    Расщепление углеводов. — Четыре общих метода расщепления углеводов иллюстрируются на примере превращения D-глюкозы в D-арабинозу, приведенном ниже. Первый метод был открыт В олем (1893) и упрощен Земпленом (1927). [c.541]


    Оксимы углеводов, используемые при расщеплении углеводов по методу Воля, могут быть также с успехом получены из тидрохлорида гидройсиламппа в присутствии ппридина [863]. [c.479]

    Как правило, неоднозначно протекает в тех же условиях расщепление вторич- ных спиртов, так как первично образующиеся альдегиды легко подвергаются дальней-, ишм превращениям. Удобный препаративный способ расщепления углеводов заклто- чается в обработке гидразином продуктов окислекия тиоапеталей углеводов — сулъфо- иов при этом расщепление вторичных спиртов под действием гидразина протекает с хорошими выходами [43]  [c.827]

    Следует отметить, что D-глюкозо-б-фосфат (LIV) является общим промежуточным соединением как для пентозного цикла, так и для гликолитического расщепления углеводов. Д-Рибулозо-5-фосфат (LVII) далее окисляется в двуокись углерода или используется для синтеза D-рибозы, входящей в структуру рибонуклеиновых кислот (РНК), НАД, НАДФ, ФАД, КоА, АМФ, АДФ, АТФ и др. [c.322]

    Е. Г. Торопова (1978) провела сравнительное изучение ферментов углеродного метаболизма, обеспечивающих работу гликолитического, гексозомонофосфатного (ГМФ) путей и цикла трикарбоновых кислот у продуцента нистатина и его неактивного мутанта. Оказалось, что активность ферментов ГМФ-пути (глюкозо-6-фосфатдегидрогеназы, фосфоглюконат-дегидрогеназы и транскетолазы) у продуцента нистатина в 2—4 раза выще, чем у неактивного мутанта. Особенно эта разница велика во вторую фазу роста культур, когда начинается образование и накопление нистатина в мицелии. Автор считает, что высокая активность ферментов ГМФ-пути расщепления сахаров является одним из необходимых условий для биосинтеза нистатина. Предполагается, что связующим звеном между механизмами диссимиляции сахаров и образованием антибиотика может быть восстановленный НАДФ. Управление биосинтезом нистатина, по мнению автора, может осуществляться изменением соотнощения активности ферментов, принимающих участие в расщеплении углеводов, что позволяет в 1,5—2 раза увеличить выход антибиотика. [c.179]

    Для аэробных организмов основной путь накопления АТФ состоит в окислительном расщеплении углеводов, приводящем в конце концов к образованию двуокиси углерода и воды. При этих процессах в биологических системах в качестве окислителей выступают никотинамидаденин-динуклеотид (НАД) или его фосфат (НАДФ), переходящие в соответствующие восстановленные нуклеотиды (НАД-На, НАДФ-На)  [c.364]

    Алифатические аминокислоты синтезируются из продуктов биохимического расщепления углеводов — триоз (глицин, серин), пировиноградной кислоты (аланин, валин) или а-кетоглутаровой кислоты (глутаминовая кислота). В биосинтезе ароматических аминокислот участвует шикимовая кислота. Наконец, при биосинтезе аминокислот, содержащих гетероциклическое ядро, два углеродных атома ядра возникают из С, и Са атомов 5-фосфорибозилпнрофосфата (см. стр. 394). [c.403]

    Но на этом пути эволюционное развитие окислительного пентозофосфатного пути расщепления углеводов не остановилось. Была сформирована последовательность реакций, замыкающая этот путь в цикл, в результате чего стала возможной полная деградация молекулы сахара. Исходными субстратами на этом пути служат пентозы, образующиеся из рибулозо-5-фосфата, ксилулозо-5-фосфата и рибозо-5-фосфата (см. рис. 64). При участии двух дополнительных ферментов — транскетолазы и трансальдолазы — осуществляется перенос j- и Сз-фрагментов между изомерными пентозо-5-фосфатами и продуктами их взаимопревращений (рис. 66). Сначала транскетолаза переносит С2-фрагмент от молекулы ксилулозо-5-фосфата на молекулу рибозо-5-фосфата, в результате чего образуется С7-сахар и Сз-сахар — 3-ФГА. 3-ФГА, образующийся в транскетолазной реакции и, как известно, пред- [c.256]

    Кислые мукогюлисахариды в соединительной ткани связаны с белка- ми (см. стр. 602), поэтому для их выделения, как правило, проводят предварительное разрушение белков протеолитическими ферментами или расщепление углевод-белковых связей щелочами, после чего полисахариды экстрагируют растворами солей . Белки, также переходящие при этом в раствор, удаляют с помощью денатурирования. Смеси мукополисахаридов можно разделить на компоненты фракционированным осаждением спиртом в виде солей с различными катионами , но лучшие результаты дает фракционированное осаждение цетавлоном или ионообменная хроматография . Особенности химического поведения мукополисахаридов сделали чрезвычайно сложной задачу установления их строения. Даже идентификация моносахаридов после полного кислотного гидролиза (обычно одна из самых простых операций) является в мукополисахаридах трудной проблемой. Наличие в одной молекуле уроновых кислот и аминосахаров приводит к тому, что полисахариды гидролизуются лишь в жестких условиях, при которых освобождающиеся уроновые кислоты подвергаются интенсивному разрушению. Поэтому в последнее время работу по установлению строения этих веществ проводят на модифицированных полисахаридах, в которых сульфатные группы удалены, а все карбоксильные группы уроновых кислот восстановлены в первичноспиртовые. Ряд других классических методов установления строения полисахаридов применим к мукополисахаридам с трудом это относится к перйодат ному окислению, вызывающему разрушение остатков уроновых кислот вследствие сверхокисления, к метилированию, в применении которого успехи достигнуты сравнительно недавно. Основными методами, позволившими выяснить строение мукополисахаридов, послужили методы частичного гидролиза и частичного ферментативного расщепления. [c.541]

    Витамины группы В. Витамин Bi (тиамин) —гетероциклическое соединение состава i2H]gON4S 2 — участвует в жировом обмене и тонизирует нервную систему. В организме он соединяется с двумя молекулами фосфорной кислоты и образует активную группу фермента карбоксилазы, способствующего разложению промежуточного продукта расщепления углеводов — пировиноградной кислоты. Витамин Bi устойчив при нагревании в кислой среде, но быстро инактивируется в щелочной. Содержится в дрожжах, семенах злаковых и бобовых культур (в наружной оболочке и зародышах семян), в печени жи- [c.133]

    После очень сложных процессов переваривания пищевьи веществ происходит всасывание в лимфу и в кровь образовавшихся низкомолекулярных соединений аминокислот, полученньн при расщеплении белков, моносахаридов (глюкозы, фруктозы, галактозы и др.), полученных при расщеплении углеводов глицерина и жирных кислот, образовавшихся при расщеплении жиров, и некоторых других. [c.194]

    В течение длительного времени считали, что единственным путем сбраживания углеводов является гликолитический путь с различными вариантами метаболизирования пирувата. Однако постепенно накапливались данные, которые определенно указывали на существование иных, чем гликолиз, путей расщепления углеводов. Гликолитическая схема в одних случаях не могла объяснить использования эубактериями пентоз в качестве энергетического субстрата, а также того, каким путем они синтезируют необходимую для нуклеиновых кислот рибозу, в других — распределения С в конечных продуктах брожения. [c.251]


Смотреть страницы где упоминается термин Расщепление углеводов: [c.224]    [c.541]    [c.542]    [c.543]    [c.247]    [c.575]    [c.548]    [c.545]    [c.659]    [c.251]   
Органическая химия. Т.2 (1970) -- [ c.541 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.528 ]




ПОИСК







© 2025 chem21.info Реклама на сайте