Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительные пентозофосфатные пути

    Гетероферментативные молочнокислые бактерии накапливают в среде спирт, метаболизируя глюкозу по окислительному пентозофосфатному пути. В результате ряда ферментативных превращений образуется ацетилфосфат, восстановление которого в два этапа приводит к появлению молекулы этилового спирта. [c.222]

    Брожение не исчерпывает всех возможностей получения энергии этой группой прокариот. Хотя гликолитическое расщепление глюкозы с образованием в качестве обязательного промежуточного соединения при брожении пировиноградной кислоты является основным путем разложения глюкозы, кроме этого пути в группе пропионовых бактерий обнаружен окислительный пентозофосфатный путь, реакции цикла трикарбоновых кислот (ЦТК), активное флавиновое дыхание и окислительное фосфорилирование, сопряженное с электронтранспортной системой. Вклад каждого из этих путей в общий энергетический метаболизм зависит как от вида бактерий, так и от конкретных внешних условий. Эволюция пропионовых бактерий определенно шла по пути приспособления к аэробным условиям. У некоторых видов обнаружен эффект Пастера в присутствии кислорода воздуха переключение с брожения на дыхание. Пропионовые бактерии могут синтезировать гемсодержащие белки. В их клетках обнаружены цитохромы. [c.199]


    Использование в качестве источника энергии в анаэробных условиях пентозных субстратов, образуемых в окислительном пентозофосфатном пути, свойственно фуппе гетероферментативных молочнокислых бактерий, для которых характерно образование в качестве конечных продуктов брожения ряда органических соединений молочной и уксусной кислот, этилового спирта, глицерина, СО2 и др. Этим гетероферментативные молочнокислые бактерии отличаются от гомоферментативных, почти полностью сбраживающих гексозы по гликолитическому пути в молочную кислоту. [c.253]

    У разных представителей этой группы, способных расти, используя органические соединения, обнаружены активности ферментов гликолиза, окислительного пентозофосфатного пути, пути Энтнера—Дудорова. Описано функционирование замкнутого и разорванного ЦТК, а у некоторых тиобацилл — глиоксилатного шунта. [c.372]

    Виды, относящиеся к этому подроду, расщепляют пентозы по окислительному пентозофосфатному пути, осуществляя гетероферментативное молочнокислое брожение. Поэтому они не являются облигатно гомоферментативными молочнокислыми бактериями. [c.216]

    Окислительный пентозофосфатный путь [c.251]

    Схема начальных этапов окислительного пентозофосфатного пути представлена на рис. 64. Первая реакция заключается в фосфорилировании глюкозы с помощью АТФ и превращении ее в метаболически активную форму глюкозо-6-фосфата, аналогично тому, что имеет место на первом этапе гликолиза. Следующий [c.251]

Рис. 64. Окислительный пентозофосфатный путь (начальные этапы) Рис. 64. Окислительный пентозофосфатный путь (начальные этапы)
    Таким образом, возникнув сначала как механизм синтеза клеткой Сз-соединений, т.е. для выполнения узкой специфической задачи, этот путь получил дальнейшее развитие и стал выполнять дополнительную функцию снабжения эубактерий энергией в анаэробных условиях. Субстратная база для окислительного пентозофосфатного пути позднее была расширена, так как он стал использоваться и для сбраживания пентоз биогенного происхождения, накапливавшихся в окружающей среде. [c.256]

Рис. 66. Окислительный пентозофосфатный путь (конечные этапы) Рис. 66. Окислительный пентозофосфатный путь (конечные этапы)

    Таким образом, окислительный пентозофосфатный путь может служить циклическим механизмом полной деградации углеводов, при этом водород, отщепленный от глюкозы, поступает в электронтранспортную цепь и переносится на О2. [c.257]

    Наиболее соверщенна защита от эндогенного и экзогенного молекулярного кислорода в гетероцистах. Гетероцисты не способны к фотосинтетическому вьщелению О2. А высокие активности окислительного пентозофосфатного пути, поставляющего электроны в дыхательную цепь, где они акцептируются О2, [c.343]

    Восстановительный цикл Кальвина использует обращенные реакции окислительного пентозофосфатного пути (7,Е), который существовал уже у сбраживающих организмов. Следовательно, можно предположить, что он развился в эво- [c.114]

    Но на этом пути эволюционное развитие окислительного пентозофосфатного пути расщепления углеводов не остановилось. Была сформирована последовательность реакций, замыкающая этот путь в цикл, в результате чего стала возможной полная деградация молекулы сахара. Исходными субстратами на этом пути служат пентозы, образующиеся из рибулозо-5-фосфата, ксилулозо-5-фосфата и рибозо-5-фосфата (см. рис. 64). При участии двух дополнительных ферментов — транскетолазы и трансальдолазы — осуществляется перенос j- и Сз-фрагментов между изомерными пентозо-5-фосфатами и продуктами их взаимопревращений (рис. 66). Сначала транскетолаза переносит С2-фрагмент от молекулы ксилулозо-5-фосфата на молекулу рибозо-5-фосфата, в результате чего образуется С7-сахар и Сз-сахар — 3-ФГА. 3-ФГА, образующийся в транскетолазной реакции и, как известно, пред- [c.256]

    Важную роль в катаболизме углеводов играет пентозофосфатный цикл, или окислительный пентозофосфатный путь. Он состоит из двух частей (рис. 11.10). В первой части цикла происходит окислительное декарбоксилирование глюкозо-6-фосфата. Образовавшийся рибулозо-5-фосфат изомеризуется, и во второй части пенто-зофосфатного цикла происходит ряд взаимопревращений пентозофосфатов, в ходе которых в качестве промежуточных соединений получаются фосфаты моносахаридов с [c.340]

    Первоначально окислительный пентозофосфатный путь возник, вероятно, для обеспечения эубактерий пентозами. В этом случае возникновение только трех новых ферментов (глюкозо-6-фосфат-дегидрогеназы, лактоназы и фосфоглюконатдегидрогеназы) уже приводило к синтезу пентоз. Поскольку к этому времени функционировали изомеразные ферменты гликолитического пути (см. рис. 53), формирование фосфопентозоизомеразы произошло довольно легко. Действительно, при определенных условиях окислительный пентозофосфатный путь на этом завершается. [c.252]

    Первые два его этапа — фосфорилирование молекулы глюкозы и ее дегидрирование до 6-фосфоглюконовой кислоты — идентичны первым двум этапам окислительного пентозофосфатного пути. Специфичны для пути Энтнера—Дудорова две следующие реакции 1) дегидратирование 6-фосфоглюконовой кислоты, приводящее к образованию КДФГ-кислоты 2) расщепление продукта первой реакции на два Сз-фрагмента. Конечными продуктами второй реакции являются пировиноградная кислота и 3-ФГА. Последний окисляется в пировиноградную кислоту так же, как в гликолитическом пути. Следовательно, при разложении молекулы глюкозы до пирувата по пути Энтнера—Дудорова образуется [c.259]

    Некоторые авторы считают, что особенность окислительного пентозофосфатного пути — перенос электронов на окислительных этапах на НАДФ , а не на НАД — в последующем оказалась очень выгодной для аэробов, так как позволила иметь два отдельных пула восстановленных пиридиновых переносчиков, с одного из которых (НАД Н2) электроны поступали в дыхательную цепь, а с другого (НАДФ Н2) использовались в биосинтетических восстановительных реакциях. [c.252]

    Окислительный пентозофосфатный путь функционирует в качестве единственного пути сбраживания углеводов у облигатных гетероферментативных молочнокислых бактерий. Эти бактерии лишены ключевых ферментов гликолитического пути, например аль-долазы и триозофосфатизомеразы. Большинство молочнокислых бактерий имеют два пути сбраживания углеводов гликолитический и окислительный пентозофосфатный. Сбраживание гексоз, [c.253]

    Остановимся теперь на функциях последнего этапа пути. Как механизм, обеспечивающий полную деградацию углеводов, этот путь не получил универсального распространения, хотя есть эубактерии, осуществляющие разложение углеводов в аэробных условиях только по окислительному пентозофосфатному пути. У многих организмов, использующих пентозы в качестве субстратов брожения, окислительный пентозофосфатный путь служит для превращения пентоз в гексозы, которые затем сбраживаются в гликолитическом пути. Кроме того, выще мы упоминали о двух точках пересечения этого пути с гликолизом на этапах образования 3-ФГА и фруктозо-6-фосфата. Все это говорит о тесном контакте окислительного пентозофосфатного пути с гликолизом и о возможном переключении с одного пути на другой. Наконец, помимо пентоз, образующихся на начальных этапах пути, возникновение С4- и С7-сахаров в транскетолазной и трансальдолазной реакциях также представляет определенный интерес для клетки, так как эти сахара являются исходными субстратами для синтеза ряда важных клеточных метаболитов. [c.257]

    Согласно существующим представлениям путь Энтнера—Дудорова сформировался позднее гликолитического и окислительного пентозофосфатного путей и возник как ответвление последнего, поскольку начала окислительного пентозофосфатного пути и пути Энтнера—Дудорова идентичны и для последнего необходимо было сформировать только два новых фермента (6-фосфо-глюконат-дегидратазу и КДФГ-альдолазу). Появление пути Энтнера—Дудорова, вероятно, было вызвано высокой потребностью [c.259]


    У энтеробактерий гликолитический и окислительный пентозофосфатный пути функционируют как центральные конститутивные пути метаболизирования углеводов, путь Энтнера—Дудорова — как индуцибельный. [c.259]

    Как можно видеть из схемы процесса (см. рис. 67), путь Энтнера—Дудорова имеет несколько точек пересечения с гликоли-тическим и окислительным пентозофосфатным путями 6-фосфо-глюконовая кислота представляет собой промежуточное соединение пути Энтнера—Дудорова и окислительного пентозофосфатного пируват и 3-ФГА — промежуточные соединения пути Энтнера—Дудорова и гликолиза. [c.261]

    Ферментативные пути, ведущие к синтезу пентозофосфатов, уже формировались в окислительном пентозофосфатном пути. Для восстановительного пентозофосфатного цикла уникальными являются два фермента, не участвующие в других метаболических путях фосфорибулокиназа и рибулозодифосфаткарбоксилаза. Первый из них связан с активированием молекулы акцептора путем вторичного фосфорилирования, а второй катализирует реакцию акцептирования рибулозо-1,5-дифосфатом молекулы СО2 и последующее гидролитическое расщепление образовавшейся гексозы на 2 молекулы 3-ФГК, одна из которых в карбоксильной группе содержит углерод из СО2. [c.294]

    Такова биосинтетическая часть цикла, ведушая к фиксации СО2 и образованию из нее молекулы гексозы. Однако чтобы функционировал этот механизм, необходимо постоянное воспроизведение молекул — акцепторов СО2. Остальные ферментативные реакции цикла служат для регенерации акцептора СО2 — рибулозо-1,5-дифосфата и катализируются ферментами, большинство из которых функционирует в окислительном пентозофосфатном пути (ферменты Фд—Ф13 на рис. 77). Суммарное уравнение восстановительного пентозофосфатного цикла можно изобразить следующим образом  [c.296]

    Многоатомные спирты окисляются этими бактериями в альдо-зы и кетозы, например сорбит— сорбоза глицериндиоксиацетон. Альдозы и кетозы могут далее окисляться в соответствующие кислоты. Метаболизирование сахаров осуществляется по окислительному пентозофосфатному пути. [c.400]

    Катаболизирование архебактериями сахаров происходит по путям, свойственным эубактериям гликолиз, окислительный пентозофосфатный путь, ЦТК и путь Энтнера—Дудорова. Эти катаболические пути найдены не у всех представителей группы. У многих архебактерий, например, отсутствует гликолиз. Таким образом, анаболические и катаболические пути превращения углеродных соединений у архебактерий сходны с эубактериальными путями. [c.415]

    Последующие реакции надо рассматривать только как процессы превращения пентозофосфатов в гексозофосфаты и обратно. Благодаря включению такой последовательности реакций окислительный пентозофосфатный путь замыкается в цикл. Рибулозо-5-фосфат находится в равновесии с рибозо-5-фосфатом и ксилулозо-5-фосфатом. Рибозофос-фат-важный предшественник в процессе синтеза нуклеотидов и нуклеиновых кислот. При участии транскетолазы и трансальдолазы пентозофосфаты превращаются в две молекулы фруктозо-6-фосфата и одну молекулу глицеральдегид-З-фосфата. В результате изомеризации фрук- [c.228]

    Исходным соединением для образования пентозного компонента нуклеотидов служит рибозо-5-фосфат. Он может синтезироваться двумя путями 1) окислительным-из глюкозо-6-фосфата через окислительный пентозофосфатный путь и 2) неокислительным-из фруктозо-6-фосфата и глицеральдегид-З-фосфата в результате редакций, катализируемых трансальдолазой и транскетолазой (разд. 7.2.2). Рибозо-5-фосфат используется для синтеза пуриновых и пиримидиновых нуклеотидов в высокоэнергетической форме-в виде фосфорибозилпирофосфата. Восстановление рибозы до дезоксирибозы происходит на стадии рибонуклео-тида и может осуществляться различным образом. [c.256]

    При полном окислении субстрата единственным окисленным продуктом является СО2, а конечным этапом окисления — в основном цикл трикарбоновых кислот (см. рис. 84). В качестве альтернативных систем следует назвать цикл дикарбоновых кислот у Е. соИ (рис. 109) и окислительный пентозофосфатный путь (Варбурга—Диккенса—Хорекера) у Glu onoba ter см. рис. 82). В этом случае, чтобы молекула гексозы окислилась полностью, цикл должен прокрутиться шесть раз. [c.151]

    Схема начальных этапов окислительного пентозофосфатного пути представлена на рис. 68. Первая реакция заключается в фосфорилировании глюкозы с помощью АТФ и превращении ее в метаболически активную форму глюкозо-6-фосфата, аналогично тому, что имеет место на первом этапе гликолиза. Следующий этап заключается в дегидрировании глюкозо-6-фосфата, катализируемом глюкозо-6-фосфат-де-гидрогеназой. Особенность реакции в том, что в ней участвуют НАДФ+, в качестве акцептора водорода. Образовавшееся соединение [c.215]

    Окислительный пентозофосфатный путь функционирует в качестве единственного пути сбраживания углеводов у так называемых облигатных гетероферментативных молочнокислых бактерий. Эти бактерии лишены ключевых ферментов гликолитического пути, например альдо-лазы и триозофосфатизомеразы. Большинство молочнокислых бактерий имеют два пути сбраживания углеводов гликолитический и окислительный пентозофосфатный. Сбраживание гексоз, как правило, протекает по гликолитическому пути, а пентоз — по окислительному пентозофосфатному. Это имеет место, например, у La toba illus plan-tarum. Ферменты окислительного пентозофосфатного пути обнаружены у клостридиев. [c.219]


Смотреть страницы где упоминается термин Окислительные пентозофосфатные пути: [c.476]    [c.340]    [c.231]    [c.251]    [c.256]    [c.257]    [c.258]    [c.321]    [c.80]    [c.215]   
Биохимия Том 3 (1980) -- [ c.59 , c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Окислительный пентозофосфатный

Пентозофосфатный путь



© 2025 chem21.info Реклама на сайте