Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкоупругое поведение полимеро связь между напряжением

    Вязкое течение возможно не только при сдвиге, но и при других видах напряженного состояния. Из них важнейшее значение имеет одноосное растяжение. Вся методология разделения полной деформа-дии на обратимую и необратимую составляющие, оценки скорости деформации, напряжения, вязкости остается для растяжения точно такой же, как для сдвига с естественной заменой деформаций сдвига (7) относительным удлинением (е), касательного напряжения (т) нормальным (а) и сдвиговой вязкости (т)) продольной (Л). При этом для вязкоупругих полимерных расплавов в отличие от обычных вязких жидкостей не существует какой-либо простой связи между сдвиговой и продольной вязкостями, т. е. по результатам измерений вязкостных свойств расплава при сдвиговом течении нельзя предсказать, каким будет сопротивление деформированию при одноосном растяжении, осуществляемом в различных кинематических режимах. Отсюда следует необходимость изучения вязкостных свойств расплавов полистиролов при одноосном растяжении, поскольку этот метод дает независимую информацию о поведении полимера, важную как для непосредственных практических приложений, так и для выяснения общих закономерностей проявлений вязкоупругих свойств полимерных систем при различных видах напряженного состояния. [c.179]


    Для получения количественной однозначной оценки свойств материала недостаточно измерения условных показателей его жесткости , податливости или вязкости , а необходимо воспользоваться какой-либо достаточно общей моделью механического поведения полимера как сплошной среды, измерить константы, входя щие в эту модель как основные количественные характеристики материала, и установить их взаимосвязь с его строением и составом. Такими общими простейшими моделями поведения среды может быть упругое (гуковское) тело, свойства которого определяются модулями упругости, вязкая (ньютоновская) жидкость, показателем поведения которой служит ее вязкость, и линейное вязкоупругое тело, характеризуемое набором значений времен релаксации и отвечающих им величин модулей (релаксационным спектром) или различными вязко-упругими функциями. Последняя модель наиболее важна для полимерных материалов, однако ее применимость ограничена областью малых деформаций и напряжений, в которой эти величины пропорциональны друг другу (т. е. связаны между собой линейно). [c.142]

    И связь между поведением полимеров в различных временных и частотных интервалах и их молекулярным строением. Приведенные здесь графики представляют экспериментальные данные, заимствованные из литературных источников и объединенные методом приведенных переменных (упомянутым в предыдущей главе и детально разобранным в гл, II). чтобы перекрыть возможно более щирокий интервал шкалы эффективного времени или частоты. Все измерения проведены на изотропных материалах при достаточно низких значениях напряжения, обеспечивавших линейность вязкоупругих свойств. Обычно измерения проводились при простом сдвиге, хотя в двух случаях было применено простое растяжение (при котором преобладают эффекты сдвига). Во всех случаях необходимо было вычислять ряд вязкоупругих функций по другим, пспосредствспио измеренным функциям, нсполь зуя методы пересчета, упомянутые в предыдущей главе и подробно изложенные в гл. 3 и 4. Вычисления детально описаны в другой работе [1]. [c.36]


Введение в физику полимеров (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкоупругость



© 2024 chem21.info Реклама на сайте