Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопротивление деформированию сталей

Фиг. 7. Изменение сопротивления деформированию при сжатии хромоникелевой стали в зависимости от температуры нагрева. Фиг. 7. <a href="/info/426602">Изменение сопротивления</a> деформированию при сжатии <a href="/info/122315">хромоникелевой стали</a> в зависимости от температуры нагрева.

    СОПРОТИВЛЕНИЕ ДЕФОРМИРОВАНИЮ СТАЛЕЙ [c.13]

    Установлены количественные зависимости эксплуатационных характеристик пластически деформированной стали от степени деформации и режимов деформационного старения. Предложен обобщенный критерий для оценки склонности стали к деформационному старению, выраженный через известные механические характеристики. Показано, что деформационное старение способствует сближению значений предела текучести и временного сопротивления стали, снижению характеристик трещиностойкости и сопротивления малоцикловому и коррозионно-механическому разрушению. [c.195]

    Исследования показали, что сопротивление аустенитных сталей микроударному разрушению в значительной степени определяется природой легирующих элементов и содержанием углерода [12, 47, 54]. Разные легирующие элементы при различном их содержании в стали могут образовывать аустенит с различными свойствами, которые прежде всего проявляются в степени его стабильности и склонности к упрочнению при деформировании микрообъемов стали. Ранее показано, что в условиях микроударного воздействия в процессе пластической деформации микрообъемов аустенита происходит его частичный распад с образованием мартенситной фазы. В этом случае значительно повышается сопротивление стали микроударному разрушению. Однако для некоторых аустенитных сталей это явление проявляется слабо. Стали со стабильной структурой аустенита разрушаются быстрее, чем стали с нестабильной структурой. Устойчивость аустенита зависит от состава стали и природы легирующих элементов. Например, никелевый аустенит более устойчив, чем марганцевый. [c.206]

    Сопротивление деформированию этих сталей зависит главным образом от содержания углерода (С). Чем больше в углеродистой стали углерода, тем ниже ее пластичность и выше сопротивление деформированию. Эти стали содержат примеси, к которым относятся марганец (Мп), кремний (51), сера (5), фосфор (Р) и другие элементы, влияющие на ее пластичность. [c.7]

    Диаграмма на фиг. 7 показывает, что упрочнение легированных сталей начинается с температур 900—850°. Поэтому средняя температура конца горячей обработки давлением этих сталей обычно принимается равно 850°. Сравнивая изменение предела прочности хромоникелевой стали (табл- 3) с изменением сопротивления деформированию (фиг. 7), измеренного мессдозой и осциллографом, можно видеть, что при температуре 1100° сопротивление деформированию хромоникелевой стали почти в 5 раз выше предела прочности 1ри этой же температуре. Поэтому при расчете мощности машин-орудий для горячей обработки сталей давлением должна учитываться не величина предела прочности при растяжении, а величина сопротивления деформированию при сжатии. [c.14]


    Изложенные выше закономерности изменения структуры, механических свойств, сопротивления деформированию и технологической пластичности углеродистых и легированных сталей п зависимости от их химического состава и условий горячего деформирования позволяют научно обосновать термомеханические факторы обработки давлением сталей. [c.72]

    Из приведенных кривых видно, что сопротивление деформированию жаропрочных сплавов при средней температуре горячей обработки 1000° в 5—8 раз выше по сравнению с обычными конструкционными легированными сталями (фиг. 56), а это вызывает необходимость повышения мощности машин орудий для горячей обработки и применение особо стойких сталей для изготовления инструмента. [c.94]

    Таким образом, для снижения сопротивления деформированию и исключения упрочнения в процессе ковки, горячей штамповки и прокатки жаропрочных сплавов, всегда следует иметь в виду необходимость снижения интервала температур пластической деформации до 1000—1200°, что соответствует перепаду температур 200° вместо 350° у обычных конструкционных сталей. [c.95]

    Деформация при температуре ниже 950° значительно понижает пластичность этих сталей. При этом резко выраженная гетеро-генизация структуры в районе этих температур повышает сопротивление деформированию и неравномерность деформации, что [c.144]

    Например, при фиксированном значении относительного начального напряжения образцы из стали марки 20 разрушаются рань-ше, чем образцы из стали марки 10, имеющей меньшие значения С, п и к (см. таблицу). Между тем, ресурс долговечности в пластической стадии деформирования больше для стали марки 20, Это объясняется тем, что сталь марки 10 имеет более высокую величину отношения предела текучести ат к временному сопротивлению (Тв (для стали марки 10 Стт/сгв = 0,7, для стали марки 20 От/Ов = 0,46). Аналогично можно объяснить изменение параметров кривых долговечности образцов из стали марки 45 при переводе из одного структурного состояния в другое. [c.61]

    Сопротивление коррозионной усталости зависит также от величины амплитуды циклического деформирования. Рост амплитуды ведет к увеличению интенсивности электрохимических (локальная коррозия и наводороживание) процессов в вершине трещины, снижая тем самым время до разрушения. Со снижением амплитуды уменьшается интенсивность электрохимических процессов, но с увеличением времени до разрушения повышается И время контакта со средой, т. е. увеличивается роль электрохимических процессов, протекающих во времени. По> тому влияние величины амплитуды деформирования на сопротивление сталей коррозионной усталости неоднозначно и определяется условиями испытаний. Известно, что с ростом агрессивности среды воздействие амплитуды циклического деформирования на долговечность материала снижается. При малоцикловой коррозионной усталости с увеличением амплитуды отрицательное воздействие среды ослабевает, и, начиная с некоторого (критического) значения амплитуды, среда практически уже 52 [c.52]

    Известно, что микрогеометрия поверхности деталей оказывает существенное влияние на их выносливость в воздухе чем меньше шероховатость поверхности, тем больше выносливость, однако в коррозионной среде такой закономерности не наблюдается. Часто у деталей, имеющих меньшую шероховатость поверхности, коррозионная выносливость ниже, чем у деталей с более шероховатой поверхностью, но в приповерхностных слоях которых действуют остаточные сжимающие напряжения. Установлено, например, что при одинаковой шероховатости поверхности скоростное точение повышает, а силовое — снижает сопротивление усталости образцов из нормализованной стали 45 и в воздухе, и в коррозионной среде [221 , При силовом точении возникает значительная неоднородность физико-химических свойств поверхностных слоев металла, дефектность структуры и пр что приводит к ухудшению несущей способности деталей при циклическом деформировании. [c.167]

    Изучение кривых течения и изменения сопротивления деформированию сталей в зависимости от скорости деформирования позволяет констатировать следующее [3]. При осадке на 30% углеродистых сталей со скоростью деформации, изменявшейся в широких пределах от 0,1 до б mJ k, имеет место значительное влияние скорости на сопротивление деформированию. При динамической деформации среднеуглеродистой стали с содержанием 0,45% С сопротивление деформированию при 1150° увеличивается почти в 4 раза, а при температуре 850° в 2,5 раза по сравнению со статической деформацией. [c.77]

    Рациональная термическая обработка существенно повышает сопротивление стали коррозионной усталости. Так, эффективным методом повышения сопротивления среднеуглеродистых сталей периодическому нагружению в агрессивных средах является повер 1остная закалка токами высокой частоты. Эффективность поверхностной закалки увеличивается с ростом агрессивности сред. Ее защитное действие, с учетом того, что закалка не влияет на коррозионную стойкг>сть сталей, сводится к созданию в металле остаточных сжимающих напряжений [71], Одним из путей повышения сопротивления сталей мартенситной и тро-остит-мартенситной структуры служит и так называемая термомеханическая обработка (ТМО). Последняя заключается в нагревании стали до Температуры аустенизации, деформировании скручиванием с последующей закалкой в масле и отпуске при температурах 110-450 С, [c.125]


    Г.В.Карпенко с сотр. [190] рассматривали влияние чистоты низкоуглеродистой стали по неметаллическим включениям на ее сопротивление малоцикловому разрушению. Они установили, что при упруго-пластическом деформировании стали 20 в воздухе, дистиллированной воде, водных растворах NaOH и Na I, а также при наводороживании наибольшей долговечностью обладают образцы с включениями кремнезема, а наименьшей — с включением пластинчатых силикатов. Повышение pH среды от 2 до 12 увеличивает выносливость этой стали с неметаллическими включениями разной природы. При испытании в щелочной среде выносливость стали выше, чем в воздухе, что авторы связывают с образованием гидрооксидного слоя, затрудняющего доступ кислорода в зону деформации. Вакуумное рафинирование, приводящее к уменьшению количества неметаллических включений, вредных примесей, газов и пр., повышает выносли- [c.120]

    Подобного рода эффекты изменения сопротивления малоцикловому деформированию материала при наличии наложенных высокочастотных деформаций (напряжений) имеют место и при мягком режиме нагружения, причем в ряде случаев эти эффекты (стимулирование роста циклической пластической деформации 5 и деформации ползучести в области высоких температур рис. 5.4, б) оказываются особо выраженными, как это показано на рис. 5.5, б для мягкого режима малоциклового деформирования стали Х18Н10Т при температуре 1 = 650 °С. При этом следует обратить особое внимание на то, что величина входящей в уравнение (5.10) составляющей усталостного повреждения dy2, непосредственно обусловленная амплитудой наложенной деформации 2, относительно невелика (рис. 4.9), но факт наличия этой наложенной деформации e 2 существенным образом может увеличить как основную составляющую усталостного повреждения d/i в силу стимулирования роста полной циклической деформации 5 или е , (рис. 5.5, б), так и составляющую квазистатического повреждения d, (рис. 4.9) в силу подобного влияния на односторонне накапливаемую пластическую деформацию (рис. 5.5, б). [c.161]

    Сопротивление перлитных сталей хрупкому разрушению существенно зависит от размера и сечения детали. Поэтому в образцах небольшого размера, предназначенных для качественного контроля и весьма удобных для лабораторных методов испытания, трудно воспроизвести условия нагружения, соответствующие условиям хрупкого разрушения при эксплуатации. Одним из ранних, наиболее разработанных в этом направлении был метод ударных испытаний надрезанных образцов на изгиб, в которых малые размеры образца компенсировались применением надреза и высокой скорости деформирования [8, 9]. В настоящее время для контрольных испытаний по оценке качества сталей перлитного класса наиболее широкое распространение получили образцы Шарпи с острым У-образным надрезом (рис. 4.2) [10, 11]. Испытания на ударную вязкость в интервале температур обнаруживают переход от высоких к низким значениям работы разрушения образца (рис. 4.3, а). Принято переходную температуру материала определять как температуру, при которой для разрушения образца требуется минимальная энергия, например 2,1, 2,8 или4,2кгс-м. Установлено также, что у углеродистых сталей при переходе от вязкого разрушения к хрупкому наблюдается закономерное изменение внешнего вида излома образцов от волокнистого до кристаллического. Процент кристалличности или волокнистости в изломе, взятый по диаграмме рис. 4.3, б, использовался как критерий при альтернативном определении переходной температуры. При решении многих конструкторских задач требуется тем или другим способом находить переходную температуру стали для прямого или косвенного определения минимальной рабочей температуры, до которой выбранная сталь может быть применена без опасности хрупкого разрушения. Наиболее распространено определение минимальной работы разрушения образца при заданной температуре, что служит одним из условий спецификации на поставку стали. [c.145]

    ЛУЖЕНИЕ — нанесение на поверхность металлических изделий тонкого слоя олова. Оловянные покрытия (толщиной 0,2 — 10 мкм) защищают изделия из стали, меди, меди сплавов и др. от коррозии металлов. На др. изделия, нанр. из титана и титана сплавов, олово наносят перед пайкой мягкими припоями, а также для снижения сопротивления деформированию при обработке давлением. В некоторых случаях Л. дает возможность защищать участки стальных изделий от диффузии азота при азотировании, предохранять медные изделия от разрушающего действия серы при гуммировании. Пористость оловянных покрытий зависит от способа нанесения и толщины слоя олова напр., при элект-тролитическом и горячем Л. жести при толщине 0,2—2,5 мкм она составляет от 10 до 1 поры на 1 см поверхности, при толщине более 3 мкм образуется практически бес-пористоо покрытие. Пористость покрытий на изделиях, находящихся во влажной воздушной среде или в различных неорганических средах, должна быть минимальной, поскольку в этих условиях покрытие является катодным и каждая пора становится очагом интенсивной коррозии металла основы. Пористость покрытий, взаимодействующих с растворами многих органических кислот (напр., щавелевой, лимонной, яблочной), вызывает растворение нетоксичного олова, к-рое является в данных условиях анодным и захцища-ет изделия от коррозии электрохимически. Чтобы затормозить растворение олова и в определенной степени ослабить действие на него органической среды, такие аокры-тия дополнительно лакируют. [c.716]

    Рассматривая кривую течения, показывающую изменение сопротивления деформированию хромоникелевой стали от температуры, можно сделать следующие выводы а) в интервале температур 1100—1000° имеет место горячий механизм деформации, поскольку напряжение деформации изменяется в пределах 8—10 кГ1мм , а механическое упрочнение практически отсутствует б) в интервале температур 1000—900° сопротивление деформированию возрастает с 10 до 18 кГ1мм , что указывает на наличие механического упрочнения стали в случае обработки ее при температуре 900° и на неполный горячий или смешанный механизм деформирования стали в случае обработки ее при этой температуре в) поскольку при 900° механическое упрочнение стали становится уже значительным, температура конца обработки хромоникелевой стали должна выдерживаться в пределах 850—900°. Кривые на фиг. 8 показывают, что стали данного типа приобретают высокое механическое упрочнение при температурах пластической деформации ниже 800°. Поэтому температура конца горячей обработки давлением легированных сталей не должна быть ниже 800—850°. [c.14]

    Так, при динамической деформации — осадке на 30% под молотом—углеродистой стали в диапазоне температур 1150—850° сопротивление деформированию увеличивается по сравнению с такой же осадкой под прессом почги в 2,5—4 раза (фиг. 9) [4]. [c.15]

    У легированных сталей температура конца горячей деформации более высокая, так как температура начала рекристаллизации этих сталей выше, чем у углеродистых. Кроме того, из сделанного выше анализа изменения механического упрочнения легированных сталей ЗОХГСНА и 18ХНВА в зависимости от температуры следует, что при 800—900° сопротивление деформации почти не изменяется и составляет 30—35 кГ1мм . При 700° сопротивление деформированию данных сталей возрастает до 50—60 кГ1мм , т. е. увеличивается в 2 раза. Это указывает на то, что при наличии высокого механического упро>чнения рекристаллизация в процессе деформации при данной температуре практически отсутствует, Для снижения сопротивления деформации, во избежание образования трещин, расслоений при горячей обработке давлением и появления хрупкости температура конца обработки легированных сталей не должна быть ниже 800—850°. [c.73]

    Такая закономерность изменения сопротивления деформированию в зависимости от химичесього состава указывает на совершенно различны механизм деформирования в области высоких температур у малолегнрованиых сталей и высоколегированных сплавов. Так, например, механизм деформирования при горячей обработке давлением конструкционных легированных сталей даже при температуре 850° соответствует горячему механизму, и некоторое незначительное упрочение данного класса сталей наблюдается лишь при температурах ниже 850°. Поэтому эти стали могут подвергаться горячей обработке в интервале температур 1200—850° при широком перепаде температур 350°. При этом применение температуры конца деформации ниже 850° заметно не повышает [c.94]

    Сопротивление нержавеющей стали КР в хлоридсодержащей среде при 290 °С определяли при постоянной нагрузке и постоянной скорости деформирования 2,8-10 с образцов из стали 304, отожженной в течение 1 ч при 1039 С с последующей закалкой в воду. Другие образцы получали быстрым охлаждением прутка из стали 304, проплавленного неплавящимся электродом [197]. На рис. 88 приведены зависимости относительного сужения у и максимальной нагрузки Ощах от потенциала ф для однофазной стали и проплавленного металла в деаэрированном растворе, содержащем [c.212]

    Явление ползучести стали при низких температурах (в частности при 20° С) изучено значительно в меньшей степени, чем при более высоких. Поэтому рассмотрим сначала возможности математического описания ползучести стали на воздухе при температуре 20 С и при постоянном растягивающем напряжении. Как видно из соответствующей кривой ползучести (рис. 3.1, кривая 1) скорость ползучести быстро уменьшается и достигает нуля. Эта особенность кривых ползучести стали при низких температурах хорошо известна [38]. Обычно этот эффект связывают с упругим или коттрелловским взаимодействием между полем напряжения дислокации и полем напряжения, вызванным смещением за счет растворения атомов другого элемента в решетке. Атомы углерода и азота в твердом растворе могут образовывать атмосферы Коттрелла вокруг движущихся дислокаций. Эти атомы увлекаются дислокациями, что приводит к максимальному сопротивлению, деформированию и скорость ползучести уменьшается из-за взаимодействия дислокаций с атмосферами. При более высоких температурах уменьшается устойчивость сплавов против возврата, который приводит к перестройке дислокаций. Вследствие этого [c.72]

    Фактически упрочнение в нашем случае является деформационным. Можно предположить, что при напряжениях близких к пределу текучести помимо коттрелловского механизма включаются и другие механизмы деформирования. Высокое приложенное напряжение может вырвать дислокацию из атмосферы тормозящих ее примесей, вследствие чего сопротивление деформированию может существенно ослабляться. Этим вызвано включение в выражение (3.11) множителя - а. Уравнения (3.10), (3.11) описывают процесс ползучести стали при температурах порядка 20 С. Деформацию ползучести можно легко определить, [c.74]

    Качество стали оценивается рядом структурнонечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. К первой группе свойств относятся модули упругости Е и коэффициент Пуассона а. Величина Е характеризует жесткость (сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл- Легирование и термическая обработка практически не изменяют величину Е. Поэтому эту характеристику можно рассматривать как структурно-нечувствительную. Коэффициент Пуассона р отражает неравнозначность продольных и поперечных деформаций образца при натяжении. При упругих деформациях л = 0,3. Условие постоянства объема стали при пластическом деформировании требует, чтобы л = 0,5. При определенных значениях относительной деформации 8 > 8т (или 80,2, 8о,з). Зависимость ст(е) отклоняется от прямолинейного закона (Гука). Предел текучести ат(ао,2 или ао,5) связан с величиной 8т по закону Гука ат = 8тЕ. Дальнейшее увеличение деформаций способствует увеличению напряжений. [c.88]

    Однако применение упрочняющей обработки поверхностным пластическим деформированием (ППД), например, пескоструйной обработки, алмазного выглаживания, внброна-клепа, позволяет практически полностью устранить влияние хромирования на сопротивление усталости высокопрочных сталей. Упрочняющая обработка ППД создает сжимающие напряжения в поверхностном слое н изменяет геометрию микрорельефа поверхности путем значительного увеличения радиуса микронеровностей. Для хромированных деталей упрочнение поверхностного слоя ПЦД необходимо для того, чтобы препятствовать распространению трещин, образовавшихся в хроме при циклических нагрузках, в основной металл. Это благоприятно сказывается на повышении сопротивления усталости хромированной стали (табл. 19). [c.52]

    Механотермический способ является одним из наиболее распространенных способов получения биметаллического материала, производство которого в последние годы постоянно возрастает. Обычно при толщине покрытия, которая составляет 4—10% от толщины листа, сцепление защитного слоя с основным металлом происходит за счет диффузии при одновременном действии температуры и давления. Плакирование защищаемого металла проводят как с одной, так и с обеих сторон защищаемого материала. Механотермический способ применяют обычно для получения листового биметалла, однако возможно получить биметаллический материал также за счет пластического деформирования отлитых заготовок, для чего плакирующий металл заливают в форму с установленной в ней стальной заготовкой. Бн-метал аический прокат нашел большое применение в нефтеперерабатывающей промышленности для корпусов аппаратов, в криогенной технике для снижения массы и повышения сопротивления материала к действию низких температур для вакуумплотного оборудования при транспортировании и хранении сжижженных газов. Представляет интерес биметаллический прокат из сплавов АМг-6+сталь XI8H9T, выпускаемый промышленным способом при толщинах до 10 мм. Полученные биметаллические листы имеют следующие механические свойства Ов = 550—640 МН/м, От = 400—500 МН/м, 0=15— 20%, прочность сцепления слоев 100 МН/м, Стср = =50 МН/м. . Высокое относительное удлинение обеспе- [c.80]

    Сформулированы и экспериментально обоснованы закономерности формоизменения заготовок и формирования повреждающих факторов при выполнении технологических операций, связанных с упруго-пластическим деформированием (правка, резка, гибка, калибровка, сборка и др.). Неоднородность напряженного состояния заготовок при упруго-пластическом деформировании вызывает возникновение остаточных напряжений и деформаций, интенсифицирующих процессы МХПМ, деформационного охрупчивания и старения сталей. Деформационное старение низколегированных и низкоуглеродистых сталей способствует сближению значений предела текучести и временного сопротивления, снижению характеристик трещиностойокости, малоцикловой и коррозионномеханической прочности. Склонность материала к деформационному старению оценивается по изменению отношения предела текучести к временному сопротивлению, отражающему основные механические и эксплуатационные характеристики. Дана количественная оценка и предложены технологические способы снижения отрицательных эффектов упруго-пластического деформирования, основанные на обеспечении принципов взаимозаменяемости базовых деталей и снижении остаточных напряжений и деформаций. [c.392]

    Гладштейн Л.И. Влияние величины зерна на сопротивление пластическому деформированию и на хладностой-кость строительной стали// Прочность металлов и сварных конструкций, часть П.-Якутск, 1974.- с. 178-190. [c.399]

    Белоглазов С М., Слежкин В. А. Развитие внутренних напряжений в стали и понижение ее сопротивления усталости при циклическом деформировании под влиянием абсорбированного при катодной поляризации водорода.— В кн. Коррозия и защита металлов. Калининград, изд-во Калининградского унта, 1977, вып. 3, с. 91—101. [c.173]

    V Сопротивление сТали коррозионной усталости зависит и от формы цикла (от закономерности, по которой изменяются напряжение и деформации при циклическом нагружении). Форма цикла определяется условиями эксплуатащш деталей и конструкций и бывает различной синусоидальной, пилообразной, трапецеидальной и прямоугольной. Цикл нагружения может быть как симметричным, так и асимметричным. Форма цикла влияет на процессы упрочнения металла в зоне перед вершиной трещины (зона предразрушения), а также на процессы накопле-Ш1я искажений кристаллической решетки, отдыха и перераспределения там напряжений. Кроме того, форма цикла, определяя скорость деформирования, а также время пребывания материала в деформированном состоянии, влияет на электрохимические (коррозия и наводороживание) процессы в трещине. При малоцикловом нагружении в синтетической морской воде и других средах наименьшая долговечность наблюдается для синусоидальной формы цикла при переходе к трапецеидальной форме, а затем к прямоугольной долговечность металла несколько возрастает. Отмечено, что форма цикла сказывается на сопротивлении усталости также при многоцикловом усталостном нагружении, однако в условиях малоцикловой усталости это влияние проявляется сильнее [21,71,72]. [c.51]

    Эфф ктивиым методом повь1шения сопротивления усталости тajiи в нейтральных средах является также поверхностно-пластическое деформирование (ППД) накаткой роликами. ППД, повышая сопротивление стали, существенно снижает влияние эффекта частоты нагружения, его оценивают по величине коэффициента Кц, представляющего собой отношение пределов вьшосливости при высокой и низкой частотах циклов нагружений [63]. [c.126]

    МПа превышает предел выносливости) вследствие больших потерь на внутреннее трение образцы разогреваются и теряют устойчивость. Жидкая коррозионная среда при уровнях напряжений выше предела выносливости охлаждает образец и увеличивает его долговечность. Периодическое смачивание 3 %-ным раствором Na I нагретой до 230—250°С стали при низких амплитудах циклических нагрузок также резко снижает ее сопротивление усталостному разрушению. Условный предел выносливости снижается с 185 до 145 МПа. При уровнях циклических напряжений выше предела выносливости электрохимическое воздействие коррозионной среды не успевает существенно проявиться ввиду сравнительно небольшого времени до разрушения, в то время как из-за охлаждающего эффекта ограниченная долговечность стали увеличивается. Аналогичные результаты получены и другими авторами. Следует отметить, что такое заключение не является универсальным длн разных металлов. Оно справедливо для тех металлов и сплавов, для которых повышение температуры образца (от комнатной и выше), например, в результате циклического деформирования/сопровождается монотонным снижением сопротивления усталости. К таким материалам относятся, в частности, хромоникелевые стали. [c.63]

    Автор и Ю.М.Зафийовский [132] исследовали влияние старения на сопротивление усталостному и коррозионно-усталостному разрушению стали 12Х18Н10Т в аустенизированном состоянии, а также после предварительного пластического деформирования растяжением заготовок образцов. Образцы диаметром рабочей части 5 и 25 мм испытывали при чистом изгибе с вращением (частота 50 Гц) в атмосфере, насыщенной парами и брызгами кипящего 3 %-ного раствора МаС . [c.63]

    На рис. 88 приведены результаты исследования усталости и коррозионной усталости стали 13Х12Н2ВМФ после обкатки. Эти результаты находятся в соответствии с данными других исследователей и показывают, что ППД гладких образцов повышает их предел выносливости на 20— 30 %. По влиянию обкатки на коррозионную усталость сталей нами получены чрезвычайно важные с практической точки зрения результаты, четко указывающие на ограниченность защитного действия поверхностного пластически деформированного слоя. Действительно, при базе до 5-10 -10 10 цикл нагружения выносливость стали после ППД в 3 %-ном растворе Na I мало отличается от выносливости в воздухе, т.е. подтверждается высокая эффективность ППД как метода повышения сопротивления коррозионно-усталостному разрушению. Однако увеличение базы испытания выше указанной привело к неожиданным результатам — резкому снижению уровня разрушающих циклических нагрузок. В довольно узком диапазоне долговечности разрушающее напряжение у обкатанных образцов в коррозионной среде снизилось с 550—600 МПа до 200— 240 МПа, т.е. в 2—3 раза. Условный предел коррозионной выносливости образцов, подвергнутых ППД  [c.161]


Смотреть страницы где упоминается термин Сопротивление деформированию сталей: [c.349]    [c.420]    [c.2]    [c.84]    [c.93]    [c.95]    [c.95]    [c.154]    [c.45]    [c.45]    [c.119]   
Смотреть главы в:

Основы физико-химической теории обработки металлов давлением -> Сопротивление деформированию сталей




ПОИСК





Смотрите так же термины и статьи:

Деформирование



© 2025 chem21.info Реклама на сайте