Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качество материала оценка по свойствам

    В 1975 г. Е. Фитцер [17] делает попытку охарактеризовать ресурсы и области использования тяжелых нефтяных остатков. Автор пытается оценить и количественные соотношения потребления нефтяных остатков в различных отраслях экономики и техники, в сопоставлении с общими их ресурсами. Основные аспекты работы — производство различных типов технологического углерода на основе высокотемпературной переработки нефтяных остатков, области применения и масштабы потребления технического углерода. Для оценки перспектив развития производства и областей технического применения сажи, кокса, графита, адсорбентов, автор считает необходимым предварительно получить надежную информацию но следующим позициям спецификация на сырье (нефтяные остатки) для производства различных видов технического углерода возможности модификации этого сырья с целью приведения их свойств в соответствие с требованиями спецификаций и стоимости спрос рынка и потребности в специальных видах технического углерода, вырабатываемого из нефтяных остатков экономические показатели — сопоставление стоимости получаемых изделий технического углерода с другими процессами переработки нефтяных остатков и капиталовложения в эти процессы. Не пытаясь дать общую картину развития производства технического углерода на базе переработки нефтяных остатков, автор утверждает, что главное направление использования нефтяных остатков должно быть тесно связано с развитием таких ведущих отраслей промышленности, как, например, алюминиевая, производство стали. Свое утверждение он обосновывает данными о перспективном потреблении кокса в этих отраслях в Западной Европе. Автор справедливо делает вывод, что на производство электродного кокса и пека идет лишь часть нефтяных остатков (не менее 25% от перерабатываемой нефти). Главными же направлениями использования этого нефтепродукта остается топливно-энергетическое потребление прямое потребление мазута как топлива, а также предварительная переработка но процессам гидрокрекинга, газо-фикации и использование в качестве исходного материала в про- [c.255]


    Предварительную оценку потенциальных возможностей нефтяного сырья можно осуществить по комплексу показателей, входящих в технологическую классификацию нефтей. Однако этих показателей недостаточно для определения набора технологических процессов, ассортимента и качества нефтепродуктов, для составления материального баланса установок, цехов и НПЗ в целом и т.д. Для этих целей в лабораториях научно-исследовательских институтов проводят тщательные исследования по установлению всех требуемых для проектных разработок показателей качества исходного нефтяного сырья, его узких фракций, топливных и масляных компонентов, промежуточного сырья для технологических процессов и т.д. Результаты этих исследований представляют обычно в виде кривых зависимости ИТК, плотности, молекулярной массы, содержания серы, низкотемпературных и вязкостных свойств от фракционного состава нефти (рис. 3.3), а также в форме таблиц с показателями, характеризующими качество данной нефти, ее фракций и компонентов нефтепродуктов. Справочный материал с подробными данными по физико-химическим свойствам отечественных нефтей, имеющих промышленное значение, приводится в многотомном издании Нефти СССР (М. Химия). [c.109]

    Одной из важнейших задач современной науки и техники является получение различных материалов с заданными механическими свойствами и структурой, обладающих высокой прочностью и стойкостью. Эта задача связана с детальным изучением механических (деформационных) показателей тел различной природы. Однако она не входит ни в область механики, ни даже в область молекулярной физики твердого тела, особенно физической химии (в частности коллоидной химии) и не может быть решена старыми технологическими (в основном эмпирическими) приемами. Развитие современного материаловедения связано с изучением структуры и свойств исходного продукта, путей его технологической переработки и формированием материала с заданными эксплуатационными свойствами. Образно говоря, получение твердого тела сопряжено с рядом этапов переработки исходных веществ в изделия заданного качества. Следовательно, для формирования множества твердообразных структур большое значение имеет оценка свойств исходных веществ и способы их технологической переработки в необходимые для современной промышленности и техники материалы. [c.3]


    Для отбора материалов и оценки их эксплуатационных качеств в условиях воздействия высокотемпературной внешней среды применяют лабораторные испытательные устройства — газовые и плазменные горелки, а также стендовые реактивные двигатели. При использовании кислородно-ацетиленовой горелки получают общие сведения о поведении материала в атмосфере нагретых до высокой темп-ры продуктов сгорания, а также сравнительные данные об абляционной стойкости и показателе теплоизоляционных качеств материала. Эксплуатационные свойства пластмасс, предназначенных для применения в условиях высокотемпературной внешней среды, напр, для тепловой защиты реактивных систем, определяют при испытании в электродуговой плазменной горелке. Пластмассы, предназначенные для использования в условиях воздействия потока выхлопных газов реактивного двигателя, испытывают на стендовых жидкостных реактивных двигателях и реактивных двигателях, работающих на твердом топливе. По- [c.5]

    В настоящее время продолжаются исследования по установлению корреляционных зависимостей между качеством смешения и различными физическими свойствами композиции, что открывает возможности для создания новых эффективных способов оценки качества материала. [c.23]

    Величины и (см. табл. VI.5) включались в состав вектора нормативных показателей качества продукта У только для оценки свойств материала марки В. Что касается марок А и С, то для них диэлектрические свойства не существенны и поэтому они не рассматривались. [c.275]

    Оценка стабильности и долговечности парниковой пленки обычно проводиться с помощью лабораторного оборудования. Не существует стандартной схемы испытаний для оценки деструкции свойств при использовании пленки в качестве материала покрытия для теплиц. Это связано с тем, что имеется несколько взаимосвязанных факторов, ведущих к потере механических свойств. Обычно эти факторы трудно моделировать в лаборатории. Изучение изменений, которые затрагивают механические свойства полимерных пленок в результате старения, имеет большое значение для освещения проблемы и понимания состояния пленки. Однако другие свойства пленки, в том числе физические и химические, также изменяются в результате деструкции, например, истирание непосредственно снижает пропускание света, а также механические характеристики. [c.263]

    Для определения тех или иных свойств пленочных материалов применяют методы испытаний, описанные в соответствующих ГОСТ или технических условиях. Эти методы служат в основном для проверки правильности проведения технологических процессов получения пленок,, но не позволяют производить исчерпывающую инженерную оценку материала — оценку его поведения при эксплуатации изделий. Существующие методы контроля позволяют производить относительную оценку качества пленочных материалов и сигнализируют о возможном отклонении этого качества от установленных норм. [c.177]

    Если образцы испытываются в виде пленок, то кроме внешних качеств можно количественно оценить изменение прочности, эластичности, набухания и других важных характеристик материала оценка изменения свойств определяется с помощью той же формулы, но вместо баллов вводятся количественные показатели соответствующих свойств. [c.385]

    Оценка качества материала, позволяющая установить его соответствие стандартам или техническим условиям, производится с помощью разных методов на заводах производящих и заводах, перерабатывающих пластмассы. Заводы-производители пластмасс не определяют конструкционных свойств выпускаемых материалов применительно к типовым режимам их переработки. Поэтому в настоящее время необходимо разработать Государственную систему паспортизации пластмасс с учетом технологии их переработки. [c.193]

    Феноменологические теории, как правило, основаны на постулировании в качестве главных (решающих) свойств лишь некоторых, обнаруживающихся у материалов в частных опытах, и, следовательно, не отражают полностью истинной природы их. Однако они, удерживая типичное из мира реального, охватывают широкий класс явлений действительности и притом открывают возможности формализации, а следовательно, позволяют использовать эффективные математические методы исследования не только качественной стороны тех или иных явлений, но и произвести количественное определение их основных характеристик, необходимых для оценки прочности и жесткости материала в той или иной ситуации. [c.81]

    Всесторонне оценить полимербетон, обладающий длительной прочностью и подвергающийся воздействиям однозначных усилий, возможно с помощью объемлющей диаграммы а — е. Подобные диаграммы в виде сет-ок были использованы автором при исследовании цементных бетонов [1]. Метод сеток дает возможность совмещать (сливать) теоретические диаграммы с опытными и тем самым выявлять ряд свойств, характеристик и параметров, существенно важных для практической оценки технических качеств материала, применяемого в несущих конструкциях. [c.54]


    Основными задачами диагностики технического состояния являются контроль и оценка качества изделия. В задачу контроля качества входит измерение размеров, определение свойств, проверка сплошности и однородности материала и конструктивного элемента. При оценке качества производится проверка соответствия материала и изделия заданным критериям. [c.4]

    Неразрушающий контроль (НК) позволяет проверить качество деталей, не нарушая пригодности их к использованию по назначению. Существующие средства неразрушающего контроля (ГОСТ 427—75) предназначены для выявления дефектов, оценки структуры материала, контроля геометрических параметров, оценки физико-химических свойств материала деталей. [c.478]

    Фильтрующие свойства перегородок оцениваются качественными и количественными параметрами. К первым относят максимальный или средний размер пор фильтровального материала и максимальный размер частиц, прошедших через фильтрующую перегородку ко вторым — коэффициент отфильтровывания, коэффициент пропускания, номинальную тонкость фильтрации, тонкость отсева, полноту отсева, поровую структуру материала. Качественные критерии не дают достаточно полной оценки фильтровальных материалов, так как они не отражают эффективности отделения частиц загрязнений размером меньше размеров пор. Пренебрежение мелкими частицами загрязнений недопустимо из-за процессов коагуляции. Количественные критерии оценки также неодинаково отражают качество фильтровальных материалов. Полнота отсева загрязнений, характеризуемая массовым или объемным коэффициентом отсева, не имеет явно выраженной функциональной зависимости между общим содержанием и распре- [c.214]

    Важной с практической точки зрения характеристикой термомеханических свойств полимерных материалов является их устойчивость прн повышенных температурах, определяемая теплостойкостью пли температурой размягчения. Методы определения этих показателей основываются преимущественно на изменении формы испытуемого образца под действием механической нагрузки при равномерном повышении температуры. Полученные результаты очень сильно зависят от условий испытания, т. е. от величины нагрузки, способа ее приложения к образцу, размеров образца и скорости нагревания, так что по своим значениям они существенно различаются между собой и применяются только для ориентировочной характеристики материала и для ускоренной оценки стандартности его качества. [c.115]

    Показателями качества материала называют свойства, к которым предъявлены обоснованные нормативные требования и которые используют при оценке его качества. Если числовые значения показателей качества увеличиваются с улучшением качества материала, их называют позитивными, а если уменыпяют а — .......- [c.403]

    В книге рассмотрены закономерности процессов фильтрования, осаждения, промывки и обезвоживания осадков. Описаны современные конструкции фильтров и центрифуг, фильтрующих перегородок и фильтровальных вспомогательных оещссти, рекомендации по их выбору и способам применения. Теоретический материал дается в объеме, необходимом для понимания сущности проходящих процессов и обоснования соотпошений, используемых для технологических расчетов. Описаны методы предварительного обследования и оценки свойств суспензий и осадков. Основное внимание направлено на проведение процессов разделения суспензий в промышленных условиях. Рассмотрены принципы выбора оборудования и материалов для разделения суспензий. Оценивается влияние на выбор оборудования физических и химических свойств суспензий, требований, предъявляемых к качеству продуктов разделения и особенностей производства. Описываются приемы выбора рациональных режимов и оптимизации работы фильтров. Даются примеры выбора и расчета оборудования для разделения суспензий. [c.2]

    Улучшение механических характеристик — прочности, долговечности катализаторов, носителей и сорбентов — становится все более важной задачей химической технологии в связи с интенсификацией каталитических процессов. Отыскание и научное обоснование оптимальных методов приготовления катализаторов с заданными физико-химическими и механическими свойствами, а также задачи стандартизации и выбора правильных критериев для сргкнительной оценки качества материалов, выпускаемых различными предприятиями, настоятельно требуют дальнейшей разработки и усовершенствования методов и приборов для механических испытаний катализаторов [1]. Эти испытания должны включать ряд методов, позволяющих оценивать материал с разных сторон, -в соответствии с различными возможными условиями механических воздействий [2]. Действительно, в металловедении, например, для всесторонней оценки механических свойств материала давно используются разнообразные, в совершенстве разработанные статические, ударные и усталостные испытания аналогично и в рассматриваемом иами специфическом случае высокодисперсных тонкопористых материалов — катализаторов, носителей, сорбентов, где работы в данном направлении еще только начинают развиваться, оценка механических характеристик также должна быть всесторонней и проводиться в различных условиях статических и динамических нагрузок. Этот комплекс методов должен включать испытания в условиях, отвечающих реальным условиям эксплуатации, поскольку в ходе реакции, при совместном действии механических напряжений, температуры и активной среды, могут наблюдаться резкие изменения прочности и долговечности гранул [14—18]. Вместе с тем для повседневного контроля качества материала на основе такого все-сторойнего обследования целесообразно выделение лишь одно-го-двух методов, самых характерных для данного типа гранул,— как пра вило, таких, которые наиболее чувствительны к минимальным значениям прочности. [c.5]

    В качестве метода оценки пористости может быть использована обработка шлифов засыпок испытываемых материалов. Шлиф готовят заливкой материала термополимерной смолой, не имеющей усадки [51, 83, 103, 104]. Для крупных частиц удовлетворительный шлиф получается при использовании в качестве заполнителя цемента [84]. При обработке шлифов используются соотношения, связанные с изотропными свойствами слоя. Величина рт может быть получена из данных по шлифам достаточно точно, но работа эта весьма трудоемкая и применяется лишь тогда, когда другие методы не дают необходимой точности. [c.62]

    Н АРОПРОЧНОСТЬ — свойство конструкционного материала сохранять высокую сопротивляемость пластич. деформированию при значительном повышении темп-ры. В связи с бурным развитием новой высокотемпературной техники (газовые турбины, реактивные двигатели, ракетные установки и т. п.) Ж. становится одним из важнейших свойств, определяющих эксплуатационные качества материала. Для оценки Ж. материала пользуются различными условными характеристиками. Наиболее употребительными из них являются 1) предел ползучести в кГ1мм — напряжение, вызывающее суммарную деформацию в 1% за определенное время, напр, за 1000 часов. Обозначение а , где а. — предел ползучести дробный /1000 [c.7]

    Когда пластические лхассы попользуются в строительном деле или в качестве материала для изготовления одежды, обуви, обивочных и декоративных тканей и т. д., возникает необходимость оценки их и с точки зрения действующих для этих назначений гигиенических нормативов. В этих случаях необходимо осуществить определение некоторых, имеющих гигиеническое значение физических свойств пластических масс (воздухо- и наронроницаемость, теплопроводность, электропроводность и др.), а также соответствующие физиологические исследования на людях, например влияния одежды из синтетических смол и пластмасс на терморегуляцию организма. [c.16]

    В зависимости от количества агрессивной среды, про-диффундировавшей в материал на определенную глубину, изменяются его механические, диэлектрические и защитные свойства. В связи с этим в качестве критерия оценки коррозионной стойкости полимерного материала в агрессивной среде можно принять скорость проникновения этой среды в материал. В работе [152] химическая проницаемость облученного полиэтилена оценивалась по глубине фронта постоянной концентрации агрессивной среды, определяемой индикаторным методом [153]. Показано, что проникновение сред в полимер происходит путем активированной диффузии. Предполагается, что вещество (среда) сорбируется на поверхности материала, растворяется в его поверхностном слое и мигрирует через него под влиянием градиента концентрации, запрл-няя пустоты, образовавшиеся в результате колебательного движения отдельных сегментов макромолекул. Концентрация диффундирующего веп ства на глубине х является функцией отношения x yt, где t — время диффузии. После того как фронт фиксируемой концентрации проходит через всю толщину материала, агрессивная среда продолжает накапливаться в нем вплоть до достижения сорбционного равновесия. Любые изменения строения полимерного материала, способствующие уменьшению подвижности сегментов молекулярных цепей, а также более плотной их упаковке, снижают скорость проникновения среды. Процессы, в результате которых повышается полярность полимера, увеличивают растворимость среды в полимере и скорость ее проникновения. [c.63]

    В качестве критических точек обычно рассматривают предел текучести (характеризуемый напряжением Оу и отвечаюш,ей ему деформации у) и разрушаюш ее напряжение (при o , и деформации Bft). Значения OyVi Zy, а также o , и Ej в обш,ем случае зависят.от условий деформирования, т. е. от вида напряженного состояния, скорости и температуры. Поэтому характеристики предельных состояний материалов, получаемые при некоторых нормализованных условиях испытаний, имеют прежде всего относительное значение они позволяют дать оценку свойств данного материала по сравнению с другими и указать основной характер влияния режима деформирования на условия разрушения полимера. Более обш ий физический смысл носят результаты измерений прочностных свойств, связанные с оценкой кинематических закономерностей разрушения материала. [c.251]

    Было предложено при практических измерениях рассчитывать значения N ж С В ж 5 ) с помощью сравнительно небольшого числа сечений при условии однородности структуры материала [42]. Для однородного материала можно ввести понятие топологических объемных свойств Му и Су и подвергать анализу только его представительный объем. Методика оценки Ну и Су при помощи серии последовательных плоских сечений материала подробно описана в работах [41, 43]. Однако даже при анализе относительно небольшого представительного объема количество измерительной работы при выполнении ее вручную чрезвычайно велико, и метод требует применения средств автоматизации измерений. Упомянутая выше система автоматического анализа изображения Квантимет-720 позволяет провести расчет всего за несколько секунд. Погрешность таких измерений не превышает 2% и определяется в основном качеством приготовленных шлифов. [c.135]

    В качестве добавок использовались побочные продукты или отходы нефтеперерабатывающих и нефтехимических производств. При исследовании получения дорож ных вязких битумов (ГОСТ 22245-76) было установлено, что методом окисления гудрона и компаундирования битума с различными добавками можно достичь положительных результатов по увеличению интервала гыастичности, срока службы и адгезии к минеральному материалу, а также увеличить скорость процесса окисления. С увеличением адгезии увеличивается и срок службы вяжущего материала в дорожном покрытии. Сравнение весового способа оценки адгезионных свойств дорожных битумов к минеральному материалу и визуального по ГОСТ 11508-74 показало, что нижний предел образца № 1 составляет не ниже 91%, образца №2 [c.69]

    Как отмечено выше, для выпуска качественной продукции, отвечающей мировым требованиям, надо обеспечивать контроль не только технологических параметров производства, но и качества всех компонентов, участвующих в изготовлении заводских изделий. Эту задачу выполняет лаборатория производства, оборудованная современными приборами для оценки качества компонентов и готовой продукции на всех стадиях. Лаборатория оснащена импортным прибором Ятроскан для определения группового химического состава применяемых кровельных битумов, приборами для определения прочностных свойств применяемых основ и готовой продукции, микроскопом для анализа гомогенности распределения полимеров и наполнителя, приборами для определения гибкости готовых изделий на холоде, теплостойкости, водонепроницаемости, влагонасыщения, вязкости битумов и битумнополимерной массы, определения массовой доли влаги в наполнителе, приборами для определения гранулометрического состава наполнителя, крупнозернистой посыпки, удлинения готового материала при разрыве в поперечном и продольном направлениях. Все DTO дает возможность уже на стадии приема сырья на складе установить жесткий входной контроль, не допускающий попадания некачественных компонентов в производство. [c.411]

    В процессе разработки защитных продуктов с оптимальными функциональными свойствами в зависимости от назначения и области применения проводится всесторонняя оценка их физико-химических, поверхностных, защитных свойств с применением стандартных и научно-исследовательских методов. При этом из всех существующих методов отбирают те, которые в наиболее полной мере позволяют оценить качество разрабатываемого продукта, механизм его действия. Все используемые методы разделяют на труппы в соответствии с тем, какое функциональное свойство они позволяют оценить. Группы методов объединяют в систему моделирования и оптимизации функциональных свойств (СМОФС). При таком системном подходе к проведению испытаний единичные показатели качества исследуемых продуктов, получаемые с помощью лабораторных методов, подвергают математической обработке по специально разработанным алгоритмам. Это позволяет на основе свертки большого объема экспериментальной информации определить обобщенные показатели качества материалов, наиболее достоверно отражающие уровень их эффективности при применении. Комплексная система оценки качества позволяет расчетным путем определить ожидаемые сроки хранения изделий, защита от коррозии которых осуществлена тем или иным видом консервационного материала (см. табл. 8.2). [c.367]

    Как известно, смазывающим действием обладают лишь такие жидкости, которые смачивают данную поверхность металла. Смачивание находится в тесной связи с поверхностным натяжением на границе раздела фаз [ 66 ]. Лучшими смазываюищми свойствами обладают жидкости (масла) с наименьшим поверхностным натяжением, и наоборот, жидкости, хотя и более вязкие, но обладающие большим поверхностным натяжением, мало или вовсе непригодны в качестве смазочного материала. Следовательно, определяя поверхностное натяжение данной жидкости на границе с определенной металлической поверхностью, можно составить представление о степени пригодности этой жидкости в качестве смазочного материала для данной поверхности. С оценкой поверхностного натяжения тесно связано определение и таких физических характеристик, как адгезия и краевой угол смачивания. Адгезия, характеризуя степень смачиваемости металлической поверхности данной жидкостью, часто выражается работой, которую надо затратить, чтобы разделить две фазы (жидкую и твердую), имеющие поверхность соприкосновения площадью 1 м Чем больше работа адгезии и меньше поверхностное натяжение жидкости, тем лучше жидкость смачивает поверхность металла. Жидкости, имеющие наименьшие краевые углы смачивания, лучше смачивают данную поверхность металла. [c.46]

    Несколько исследователей подчеркивали значительное влияние гелеобразующей коллоидной глины на поведение бурового раствора. Структурообразование при низких концентрациях глины свидетельствовало о ее коллоидности. Однако до появления фильтр-пресса в качестве промыслового прибора практического способа оценки коллоидности не было. Поскольку фильтрационные свойства бурового раствора зависят от природы и доли коллоидного материала в суспензии, фильтр-пресс позволяет оценить коллоидную фракцию в целом, и следовательно, внедрение этого прибора стало важным достижением в совершенствовании технологии промывки ствола скважины. [c.58]

    Накопленный материал позволил разработать и предложить к использованию необходимые для практики расчетные методы оценки параметров реологических свойств аномально-вязких нефтей, пригодные при температурах, превышающих температуру насыщения нефти парафином. Такие расчетные методы, уступая экспериментальным измерениям по точности, существенно облегчают выявление закономерностей изменения параметров реологических свойств по залежи и позволяют получить данные для использования при проектировании и разработке месторождений. Расчетная методика основана на использовании ПДНС как основного параметра аномально-вязких свойств. Нами изучены факторы, влияющие на ПДНС, и получены корреляционные зависимости между этим и остальными параметрами реологических свойств нефти. Такие корреляционные зависимости использованы для расчета параметров с учетом влияющих факторов. В качестве примера ниже изложена методика расчета реологических параметров аномально-вязких свойств пластовых нефтей из каменноугольных отложений Татарии и Башкирии. [c.87]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Роль связующего в процессе получения углеродных материалов заключается в скреплении зерен углеродного наполнителя в твердое тело за счет мрстиков из кокса, образовавшегося при термической обработке. Поэтому спекающая способность пека является чрезвычайно важной его характеристикой. Она должна определяться по отношению к конкретному наполнителю, так как процесс карбонизации и формирование кокса из связующего существенно зависит от свойств поверхности наполнителя. Однако нет признанного метода оценки этого важного критерия качества пека. По-видимому, спекающая способность должна в первую очередь оцениваться по прочности спекающегося материала. [c.152]

    Исследования биоцидов включают изучение физико-химиче-ских свойств вещества, выбираемого в качестве биоцида определение его токсичности в отношении микроорганизмов, теплокровных и человека оценку стабильности вещества и длительности сохранения биоцидных свойств, возможности нейтрализации определение характера воздействия на материалы конструкции (ингибитор стимулятор коррозии, старения и пр.) изучение более сложных физических моделей (биоцид — микроорганизм, биоцид-материал, биоцид — среда, биоцид — человек) и, возможно, изучение комплексной модели, включающей перечисленные (рис. 25). Последнее предпочтительнее, поскольку позволяет решать проблемы защиты металлоконструкций от биоповреждений с учетом требований, выдвигаемых другой суперглобальной проблемой человек — биосфера, и особенно остростоящими требованиями раздела этой проблемы загрязнение среды. [c.60]

    От удельной поверхности этого материала зависят реологические свойства утяжеленного бурового раствора. Тонкость помола, определяемая с помощью ситового анализа, не характеризует удельную поверхность частиц, а простые седиментационные методы, как установлено, не позволяют достаточно точно оценить гранулометрический состав барита. Для исследований поведения утяжеленного бурового растйора в качестве исходного требуется использовать стандартную глинистую суспензию. Мнения специалистов о том, какую суспензию считать стандартной, расходятся. АНКМ попыталась обойти эту трудность и предложила готовить суспензию барита в воде (плотность 2,5 г/см ), отмечая влияние гипса на эффективную вязкость этой суспензии. Такая методика оправдывалась тем, что при обработке барита пептизатором (например, полифосфатом натрия) влияние такой обработки выявляется при добавлении гипса. Комитет № 13 АНИ продолжает изучать методы лабораторной оценки рабочих характеристик барита. [c.129]

    В процессе выполнения рецептов, по которым прописаны мази, учащиеся знакомятся с ассортиментом отечественных мазевых основ, способами введения в них лекарственных веществ, их распределением в основе с другими ингредиентами, элементами техники изготовления мазей, в большой степени обусловленными физико-химическими свойствами лекарственных веществ, их концентрацией, а также типом используемой мазевой основы. Изготовлению подлежат 1) мази-сплавы 2) мази-растворы 3) тритурационные мази 4) мази на эмульсионных основах 5) мази на гидрофильных основах. Одним из разделов работы являются овладение методами оценки качества мазей, выбор таро-упаковочного материала, оформление Maaeii и уяснение правил их хранения. [c.429]

    В [117, 118] данный кинетический метод использован для подтверждения выдвинутой ранее гипотезы [119] о зависимости адсорбционной способности лигноцеллюлозного материала (по отношению к лигнину в растворе в условиях щелочной варки) от донорно-зкцеп-торных свойств растворенного и остаточного лигнина. В качестве стандартной ОВС использован щелочной раствор феррицианида калия. О свойствах остаточного лигнина в исследуемом лигноцеллюлозном материале судили по кинетическим характеристикам реакции окисления количественной характеристикой служила величина восстановительной емкости, рассчитываемая как количество феррицианида (г-экв) на 1 г лигноцеллюлозного материала. Для оценки степени окисления остаточного лигнина был применен метод выносного потенциометрического титрования [117]. Однако применение потенциометрических методов не позволило установить каких-либо качественных изменений остаточного лигнина на протяжении одной варки в исследуемых пределах, хотя отмечалась линейная зависимость величины восстановительной емкости от содержания лигнина в образцах одного типа варки. [c.134]

    Первой попыткой учета влияния эксплуатационных факторов на надежность и долговечность оборудования в нефте- и газоперерабатывающей промышленности и низкотемпературной технике можно считать программные продукты, вышедшие под эгидой ГГТН РФ — Методические указания Автоматизированная система управления надежностью и безопасностью и Методические указания Анализ и оценка риска опасных производственных объектов нефтехимических производств . Эти программные комплексы призваны учесть ролевые вклады элементов, в число которых впервые включен элемент качество и надежность материалов . Однако в настоящее время оба методических указания введены в действие без оценки действительного состояния материала оборудования. Учет качества материалов ведется по так называемым средневзвешенным свойствам, и данные программные продукты (до особого указания) используются без единого блока фактического состояния надежности и свойств материалов , что связано с недостаточным объемом статистически достоверной информации по данному вопросу. [c.111]


Смотреть страницы где упоминается термин Качество материала оценка по свойствам: [c.101]    [c.87]    [c.156]    [c.146]    [c.404]    [c.7]    [c.130]    [c.38]    [c.282]    [c.271]   
Свойства и особенности переработки химических волокон (1975) -- [ c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Качество материала

Материя свойства

Оценка качества

Оценка свойства



© 2025 chem21.info Реклама на сайте