Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тройные положительные азеотропы разделение

    Рассмотрение поведения систем, относящихся к различным группам, позволяет установить некоторые общие положения, имеющие значение для практического применения метода азеотропной ректификации. Из приведенных ректификационных диаграмм следует, что разделение положительных азеотропов более просто, чем отрицательных. Наиболее желательными разделяющими агентами являются вещества, образующие только бинарные азеотропы с одним или обоими компонентами заданной смеси. В последнем случае азеотропы должны иметь достаточную разницу температур кипения. В качестве агентов для разделения отрицательного азеотропа на компоненты наиболее целесообразно применять вещество с температурой кипения ниже температуры кипения этих компонентов, образующее только положительный азеотроп с одним из них или положительный азеотроп с одним и отрицательный с другим. Применение в качестве разделяющих агентов веществ, дающих с компонентами заданной смеси тройные азеотропы (положительные, отрицательные и седловидные), менее целесообразно, хотя в ряде случаев и позволяет осуществить выделение одного из компонентов. [c.142]


    Рассмотрим следующий пример. Смесь вода—пиридин образует при 92 °С положительный азеотроп, содержащий 54% (масс.) пиридина. Воду можно удалить в виде азеотропа, подобрав подходящий разделяющий агент (выноситель). К такому разделяющему агенту предъявляются следующие требования [34, 50]. Он должен образовывать с водой положительный азеотроп с температурой кипения ниже 92 °С и не должен образовывать азеотропа с пиридином, а также тройного азеотропа. При этом он должен связывать в виде азеотропа возможно большее количество воды и не должен практически растворяться в воде (чтобы обеспечить разделение гетероазеотропа при охлаждении). [c.307]

    В качестве примера приведем случай, когда метод продуктового симплекса позволяет определить возможные варианты разделения многокомпонентной азеотропной смеси, чего нельзя добиться с помощью описанных ранее методов это — двадцатикомпонентная азеотропная смесь, представляющая собой нафталиновую фракцию каменноугольной смолы [25]. Из работы [30]. "посвященной исследованию структуры диаграммы данной смеси методом термодинамико-топологического анализа и разработанной на этой основе принципиальной технологической схемы разделения, известно, что рассматриваемая полиазео-тропная смесь образует 38 бинарных азеотропов с положительным и отрицательным отклонением от закона Рауля и 16 тройных седловых азеотропов. Состав разделяемой смеси, температуры кипения и коды компонентов приведены в табл. 111,8. Состав, температуры кипения и коды азеотропов даны в табл. 111,9. [c.123]

    Система дихлорметан — ацетон — метиловый спирт представляет практический интерес с точки зрения изучения условий разделения смесей ацетона и метилового спирта с помощью азеотропной ректификации. В этой системе имеется два бинарных положительных азеотропа ацетон — метиловый спирт (т. кип. 54,6°С 86,5 мол.% ацетона) и дихлорметан — метиловый спирт (т. кип. 39,2°С 94 мол.%-дихлорметана). Система дихлорметан — ацетон неазеотропна. Температуры кипения азеотропов и компонентов показаны на треугольной диаграмме (рис. 63). Точки 1 и 2 на треугольной диаграмме изображают составы смесей, изучавшихся путем ректификационного анализа. Кривые ректификации этих двух смесей приведены на рис. 63, под треугольной диаграммой. Эти кривые свидетельствуют об отсутствии тройного азеотропа в рассматриваемой системе. Из рис. 63 следует, что ход ректификации в этой системе относительно прост. Разгонка смесей, состав которых изображается точками в треугольнике Лт1 П2 дает следующие фракции 1) азеотроп дихлорметан — метиловый спирт 2) азеотроп ацетон — метиловый спирт 3) метиловый спирт 3) метиловый спирт (рис. 63,1). При ректификации смесей, состав которых изображается точками в треугольниках Шхт В и гпхВС, получаются фракции, отвечающие вершинам соответствующих треугольников. Таким образом, наличие двух положительных бинарных азеотропов в тройной системе порождает появление трех ректификационных областей в концентрационном треугольнике. Разделяющие линии ректификации между всеми тремя областями — прямые. Это подтверждается тем, что при [c.176]


    Чаще всего разделительный агент, добавляемый к близко-кипящим смесям, образует бинарный положительный азеотрон, отводимый сверху колонны, в ряде же случаев с исходными компонентами образуются тройные азеотроиы. Отвод из колонны тройного азеотропа в качестве одного из ее продуктов (обычно дистиллята) помогает разделению компонентов вследствие их различного относительного содержания в этом продукте и в исходном сырье. [c.328]

    Итак, для полного разделения бинарного азеотропа Еу третий компонент до.лжен образовывать вспомогательный положительный азеотрон Е2 с одним из составляющих исходной смеси, и этот азеотроп должен иметь наименьшую точку кипения для данной тройной системы. Хотя теоретически безразлично, с каким из компонентов разделительный агент образует азеотрон, с практической точки зрения желательно, чтобы это был компонент, для которого требуется меньшая степень чистоты. [c.332]

    С практической точки зрения наибольший интерес представляют тройные системы, которые могут встречаться при разделении методом азеотропной ректификации бинарных смесей с положительным или отрицательным азеотропом. Рассмотрим различные системы, придерживаясь классификации Молоденко и Бушмакина [80], предложивших различать пять групп систем соответственно типу и числу азеотропов в них. Поведение систем различных групп может быть выявлено с помощью диаграмм, приводимых на рис. 49—53. Система, подвергаемая разделению, на этих диаграммах изображается стороной АВ. [c.134]


Смотреть страницы где упоминается термин Тройные положительные азеотропы разделение: [c.123]   
Азеотропия и полиазеотропия (1968) -- [ c.71 , c.72 , c.202 , c.203 , c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропия

Азеотропы



© 2025 chem21.info Реклама на сайте