Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропные смеси методы разделения

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]


    Из сказанного можно сделать вывод, что разделение рассмотренных смесей на два чистых компонента путем перегонки невозможно, так как одним из продуктов перегонки является азеотропная смесь. Для разделения азеотропных смесей прибегают к специальным методам (стр. 709 сл.). [c.665]

    Для определения воды, за исключением более старых методов высушивания в сушильном шкафу, наиболее широко применяется метод дистилляции. Этот метод нашел применение в пищевой и нефтеперерабатывающей промышленности для анализа твердых, пастообразных и других относительно малолетучих продуктов. Многие из этих методик приняты во всем мире в качестве стандартных, так как условия перегонки и требования к аппаратуре могут быть описаны достаточно четко и однозначно. Эти методики включают, как правило, отгонку воды с последующим разделением фаз. Обычно используют дистилляцию в присутствии углеводородов или органических галогенидов, которые или образуют азео-тропные смеси с водой с минимальной температурой кипения, или кипят выше 100 °С и поэтому могут служить переносчиками воды. Смесь двух или нескольких компонентов называют азеотропной в том случае, если она кипит при постоянной температуре, соответствующей данному давлению, и в процессе перегонки не изменяет своего состава. Азеотропная смесь ведет себя при перегонке как индивидуальное вещество до тех пор, пока не будет исчерпан один из входящих в ее состав компонентов (в данном случае вода). В большинстве методик анализа, использующих дистилляцию, анализируемый образец диспергируют в относительно большом объеме переносчика воды. Далее нагревают смесь до начала кипения и конденсируют образующийся пар. Конденсат собирают в градуированный приемник (конденсат разделяется на две фазы) и измеряют объем водной фазы. Азеотропные смеси с минимальной температурой кипения позволяют значительно снизить температуру, требуемую для удаления влаги, и, таким образом, осуществить определение воды в более мягких условиях, чем при обычной сушке в сушильном шкафу при атмосферном давлении. Физико-химические принципы дистилляции рассмотрены в работе [89]. [c.236]

    Разделение смеси на компоненты путем ректификации затрудняется в системах, в которых компоненты в чистом состоянии обладз7от близкими давлениями насыщенного пара или в которых образуется азеотропная смесь. В таких случаях нередко применяют методы, называемые азеотропной перегонкой и экстракционной (экстрактивной) перегонкой. Они основаны на добавлении к системе из двух компонентов третьего, который обладает различной растворяющей способностью по отношению к основным компонентам системы и в соответствии с этим неодинаково изменяет летучесть последних. В качестве примера азеотропной перегонки можно привести обезвоживание этилового спирта путем перегонки при добавлении бензола, а в качестве экстракционной — разделение бутан-бутиленовой смеси путем перегонкн при добавлении водного раствора ацетона. [c.324]


    Чтобы их разделить, надо употребить какой-либо другой физический метод разделения или прибегнуть к химическим методам. Или, наконец, добавляя третью жидкость, получить иную азеотропную смесь с минимумом температуры кипения, в состав которой входила бы одна, из двух дававших первый азеотроп жидкостей, тогда другой оставшийся компонент, пе входящий в азеотропную смесь, мог бы быть отделен перегонкой. Этот прием применяется часто. Приводим несколько примеров азеотроп-ных бинарных смесей с минимумом и максимумом температуры кипения (табл. 1). [c.35]

    Изопрен образует азеотропную смесь с н-пентеном, в системах изопентан-2 — метилбутен-1, изопрен — транс-пентен-2 обнаружены тангенциальные азеотропы, а в системах изопентан — изопрен, изопрен — ц с-пентен-2, 2-метилбутен-1 — изопрен и пентен-1 — изопрен — почти тангенциальные азеотропы. Таким образом, также исключается возможность разделения углеводородов Сй методом четкой ректификации, хотя он и наиболее экономичен. [c.157]

    Стереоизомеры олефинов С4—Се обычно разделяют азеотропной перегонкой с использованием эфиров и кетонов. При этом образуется азеотропная смесь с цис-томероы, имеющая максимальную температуру кипения. Применяется для этой цели также метод экстракции карбамидом. В последнее время для разделения структурных и стереоизомеров начали использовать адсорбционные методы, где сорбентами служат цеолиты СаА [44, 48], а также ка-тионзамещенные цеолиты типа X и V [48, 49]. [c.201]

    В промышленности и исследовательской практике часто встречается задача разделения сложных смесей, компоненты которых образуют азеотропы. Наиболее распространенными и успешно применяемыми в настояш,ее время методами разделения азеотропных смесей являются экстрактивная и азеотропная ректификация и жидкостная экстракция. Эти методы предусматривают ведение процесса разделения заданной смеси в присутствии специально подобранных веш еств, называемых для случая экстрактивной и азеотропной ректификации разделяющими агентами, а для случая экстракции — экстрагентами. Действие этих веществ заключается в изменении распределения компонентов первоначально заданной смеси между фазами в желаемом направлении (экстрактивная и азеотропная ректификация) или в создании, наряду с имеющимися, новой фазы, в которую переходит экстрагируемое вещество (жидкостная экстракция). Главной проблемой, связанной с применением этих методов, является выбор эффективных разделяющих агентов или экстрагентов, обладающих определенными специфическими свойствами. Здесь появляется возможность изменять равновесные концентрации и, следовательно, подобрать наиболее благоприятные условия разделения заданной смеси. Разумеется, это не освобождает нас от необходимости совершенствования аппаратурного оформления таких процессов, что позволяет наиболее эффективно использовать различие в составах равновесных фаз. Однако определяющим фактором рассматриваемых процессов разделения все же являются условия фазового равновесия, возникающие после прибавления новых веществ к заданной смеси. Все это и определяет одно из важнейших требований к разделяющим агентам и экстрагентам, а именно, эффективность действия в преобразовании фазовых соотношений. Кроме этого, вводимое в разделяемую смесь новое вещество должно также удовлетворять следующим требованиям  [c.186]

    Схема регенерации кетон-бензол-толуоловых растворителей, в которых в качестве кетона используют метилэтилкетон, аналогична описанной выше. При этом несколько изменяется режим процесса в сторону повышения температуры на первых ступенях отгона, поскольку температура кипения металэтилкетона выше, чем ацетона (79,6° при 760 мм рт. ст. против 56,1° для ацетона), г Если на депарафинизационной части установки применяют / МЭК в тех случаях, когда нельзя пользоваться влажным растворителем, операция осушки растворителя усложняется вследствие затруднений с получением безводного МЭК. Эти затруднения вызываются тем, что МЭК с водой образует азеотропную смесь, близкую по составу к насыщенному раствору воды в жидком МЭК. Так, количество воды в этой азеотропной смеси составляет 11,0%, а растворимость воды в жидком МЭК при 20" равна 9,9%. При такой близости составов азеотропной смеси и насыщенного раствора нельзя разделять эту азеотропную смесь при помощи процесса, рассмотренного для регенерации дихлор-этап-бензолового растворителя. Поэтому для выделения МЭК применяют другие методы разделения, в частности, орошение паров азеотропной смеси сырьем, поступающим на депарафинизационную часть установки, с целью абсорбции МЭК, хорошо растворимого в нефтяных продуктах. Возможна осушка смеси МЭК с бензолом и толуолом путем вымораживания влаги. [c.244]

    При обезвоживании этилового спирта сырец S состава, близкого к двойной азеотропной смеси этанол— вода (96 масс.% этанола), вводится в колонну, которая орощается флегмой О, содержащей бензол (рис. VI-49). В результате разделения согласно правилу прямой линии отгоняется более летучая тройная азеотропная смесь Аз (18,5 масс.% этанола, 74,1 масс.% бензола и 7,4 масс.% воды, т. кип. 64,85°С). В качестве остатка (исчерпанной жидкости) получается безводный этанол А. После охлаждения до соответствующей температуры азеотропная смесь распадается на две жидких фазы бензольную О (84,5 масс.% бензола, 14,5 масс.% воды) и водную О (36масс.% воды, 53 масс.% этанола). Бензольная фаза поступает на верхнюю тарелку разделительной колонны, а водная фаза дистиллируется во второй колонне и дает по правилу прямой линии в качестве дистиллята тройную азеотропную смесь Аз и исчерпанную жидкость D, содержащую только этанол и воду. Водный раствор подвергается ректификации в третьей колонне получается двойная азеотропная смесь S, которая направляется вместе с сырцом в первую колонну, и вода. По такому методу производится полное разделение спирта и воды в присутствии бензола. [c.509]


    В ряде случаев более эффективны такие методы разделения азеотропных смесей, которые основаны на введении в разделяемую смесь добавочного компонента, так называемого разделяющего агента, обладающего избирательным действием. При его добавлении летучесть и коэффициент активности для низкокипящего компонента возрастают значительно больше, чем для высококипящего, что и облегчает разделение смеси. Применяя различные разделяющие агенты и подбирая их концентрацию, можно изменять в широких пределах относительные летучести компонентов исходной смеси и соответственно распределение ее компонентов между жидкостью и паром. [c.512]

    Вторым законом Коновалова часто пользуются в технологической практике при выполнении специальных методов перегонки. Так, для разделения растворов, компоненты которых имеют близкие температуры кипения, широко применяется так называемая азеотропная перегонка. Принцип ее состоит в том, что в разделяемый перегонкой раствор вводят вещество, образующее с одним из компонентов азеотропную смесь с минимальной температурой кипения. В результате один компонент разделяемого раствора получается в чистом виде, а другой — в виде азеотропной смеси с третьим веществом, введенным специально. Например, при разделении м- и п-ксилолов (4ип = 139,1 и 138,35 °С) в разделяемый раствор вводят метанол, который образует с и-ксилолом азеотропную смесь с ип = 64,0 °С. При перегонке такой системы с дистиллятом уходит азеотропная смесь п-ксилола с метанолом, а кубовый остаток представляет собой практически чистый м-кся-лол. Для отделения п-ксилола от метанола в данном случае используют обычную водную отмывку, так как метанол хорошо растворяется в воде. [c.223]

    Дополнительные возможности интенсификации процессов разделения смесей углеводородов открывает сочетание в одном процессе азеотропной и экстрактивной ректификации. Примером такого процесса может являться метод разделения смесей циклопентана и неогексана, с использованием -в качестве разделяющих агентов метилформиата, образующего азеотроп с нео-гексаном, и фурфурола, повышающего относительную летучесть последнего [322]. В качестве дистиллата отбирается азеотроп неогексана с метилформиатом, из которого последний выделяется путем экстракции фурфуролом. В результате экстракции получается неогексан с примесью разделяющих агентов, а также смесь метилформиата и фурфурола, возвращаемая в процесс азеотропно-экстрактивной ректификации. Кубовый оста- [c.282]

    Близость температур кипения, о которой можно судить на основании табл. 50, не является единственной причиной трудности выделения индивидуальных нафтенов. В смеси с другими углеводородами нафтены склонны образовывать азеотропные и другие смеси, давление паров которых не подчиняется законам, действительным для обычных смесей даже простейшие компоненты, а именно бензол и циклогексан, образуют азеотропную смесь. Простой ректификации недостаточно, чтобы выделить в чистом состоянии какой-нибудь нафтен, присутствующий в сырой нефти. Нафтены можно отделить от ароматических углеводородов с помощью экстракции растворителями. Относительно легко осуществляется такое разделение методами [c.235]

    Удобным и широко применяемым методом сушки растворителей является фракционированная перегонка. Возможность и эффективность применения этого метода в отношении органических растворителей определяются несколькими факторами. Чем больше различие между температурами кипения воды и органической жидкости и чем эффективнее дистилляционная колонка, тем более СУХИМ при прочих равных условиях будет отгоняемое соединение. Многие соединения образуют с водой азеотропные смеси [905, 906]. Если соединение и вода взаимно нерастворимы, то азеотропы можно использовать для удаления воды. Если растворитель и вода не образуют азеотропной смеси, но их температуры кипения настолько близки, что эффективное разделение осуществить не удается, или же если растворитель и вода образуют азеотропную смесь с температурой кипения, слишком близкой к температуре кипения растворителя, то часто оказывается возможным добавить третий компонент, образующий тройную азеотропную смесь, и с ее помощью провести разделение. Так, например, [c.265]

    В результате подобной многократной перегонки можно практически разделить смесь на чистые компоненты. В этом заключается сущность метода разделения смеси жидких веществ путем дробной (фракционной) перегонки. Разделение смеси веществ методом дробной перегонки тем легче, чем больше разница между составом жидкости и составом пара. Однако методом дробной перегонки нельзя разделить азеотропные (нераздельно кипящие) смеси. [c.273]

    Вода, присутствующая в товарном сивушном масле, значительно осложняет его разгонку из-за образования азеотропных смесей с компонентами сивушного масла. Первой стадией разгонки сивушного масла является выделение этанола, второй — его обезвоживание методом азеотропно-экстрактивной ректификации. Суть ее состоит в том, что в присутствии большого количества амиловых спиртов (около 50 мас.%) вода, образуя азеотроп с ними, ведет себя как легколетучий компонент и выводится через верх колонны. После конденсации азеотропная смесь расслаивается на пнжиий, з основном водный, слой и верхний, в основном спиртовой, слой. Спиртовой слой возвращается на орошение этанольной колонны, а водный подвергается разделению в отгонной колонне на воду и амилол, который направляется в этанольную колонну. [c.346]

    Предложенный метод разделения азеотропной смеси отличу ется от ранее принятых отсутствием разделяющего агента, влияющего на чистоту конечных продуктов. Кр<ше того, разруше ние азеотропа изменением давления системы в этом случае невозможно из-за низкого предельного давления взрывного распада аллена. В предложенном способе азеотропную смесь отгоняют и при этом практически полностью удаляются легколетучие компоненты МАФ. [c.33]

    На рис. 40 для смеси этиловый спирт —бензол представлены кривые равновесия [11-29]. Кривая равновесия системы пар — жидкость имеет азеотропную точку. Следовательно, смесь этиловый спирт — бензол ректификацией разделена быть не может. Адсорбционным же методом разделение этой смеси возможно. [c.112]

    Триметилборат с избытком метилового спирта образует азеотропную смесь, кипящую примерно при 55 °С. Для разделения этой смеси и выделения чистого триметилбората имеется ряд методов отмывка метилового спирта серной кислотой отделение метилового спирта при помощи хлорида кальция, хлорида лития или других растворимых в спирте солей отгонка метилового спирта (в виде азеотропной смеси с триметилборатом, кипящей при более низкой температуре, чем оба компонента) с последующей экстракцией триметилбората минеральным маслом и др. [c.313]

    В зависимости от типа азеотропной смеси конечные продукты выделяются в виде кубовых остатков (азеотропная смесь с минимумом температуры кипения) или в виде дистиллятов (азеотропная смесь с максимумом температуры кипения). Основные положения технологии разделения бинарных азеотропных смесей методом ректификации приведены в работе [187] . В работе [188] этот общий принцип использован при разделении смеси муравьиная кислота — вода (схема б), а в работе [189] — при разделении смеси метил-борат — метанол (схема а). Для оценки целесообразности и экономич- [c.206]

    Далее, выбор растворителя может быть произведен на основе анализа разности температур кипения разделяемых компонентов и их смесей азеотропного состава, образуемых с предполагаемым растворителем. Этот метод пригоден для подбора растворителей, не только для разделения веществ с близкой температурой кипения, но и принадлежащих к одному гомологическому ряду. Он основан на вполне очевидном положении, что если два вещества образуют каждое в отдельности азеотропную смесь с третьим веществом — растворителем, то большее отклонение от закона Рауля будет у того компонента, который дает азеотроп с более низкой температурой кипения (если рассматривать азеотроп с минимальной температурой кипения). Следовательно, при добавке растворителя активность и летучесть такого компонента повысятся в большей степени и разделение станет возможным. [c.566]

    Что же касается разделения триметилхлорсилана (т. кип. 57,3 °С) и тетрахлорида кремния (т. кип. 57,7 °С), эта задача очень сложна, так как они образуют азеотропную смесь, которую простой ректификацией разделить невозможно. Разделение может быть осуществлено с помощью физических (азео-тропная ректификация) или химических методов (гидролиз, этерификация). [c.49]

    Разумеется, для разделения близкокипящих компонентов и неидеальных смесей, не образующих азеотропа, можно подобрать ректификационные колонны эффективностью в 100 и более теоретических ступеней разделения, поскольку насадка с ВЭТС, равной 1—2 см, сейчас не является уже редкостью. Однако вместо применения колонн с 200 или даже 300 теоретическими ступенями разделения (относительная летучесть а = 1,03 — 1,02) такие смеси можно разделить, если воздействовать на фазовое равновесие в направлении повышения значений а и достижения более благоприятных условий разделения. В качестве примера рассмотрим экстрактивную ректификацию смеси близкокипящих компонентов н-гептан — метилциклогексан, для которых разность температур кипения составляет 2,7 °С (а = 1,075). При обычной ректификации с бесконечным флегмовым числом требуется 48 теоретических ступеней, чтобы сконцентрировать смесь от 15,3 до 95,4% (мол.). Если же в смесь добавить 70% (масс.) анилина, то такого же обогащения можно достигнуть при числе теоретических ступеней 12,4 и флегмовом числе V = 35. При этом относительная летучесть возрастает с 1,07 до 1,30 [35]. Если смесь является азеотропной, то чистые компоненты можно получить только с помощью селективного метода разделения. [c.301]

    В качестве примера приведем случай, когда метод продуктового симплекса позволяет определить возможные варианты разделения многокомпонентной азеотропной смеси, чего нельзя добиться с помощью описанных ранее методов это — двадцатикомпонентная азеотропная смесь, представляющая собой нафталиновую фракцию каменноугольной смолы [25]. Из работы [30]. "посвященной исследованию структуры диаграммы данной смеси методом термодинамико-топологического анализа и разработанной на этой основе принципиальной технологической схемы разделения, известно, что рассматриваемая полиазео-тропная смесь образует 38 бинарных азеотропов с положительным и отрицательным отклонением от закона Рауля и 16 тройных седловых азеотропов. Состав разделяемой смеси, температуры кипения и коды компонентов приведены в табл. 111,8. Состав, температуры кипения и коды азеотропов даны в табл. 111,9. [c.123]

    Испарение через мембрану осуществляется с помощью непористых полимерных мембран. Исходная жидкая смесь, подлежащая разделению, приводится в контакт с одной стороной селективно проницаемой мембраны, проникшие через мембрану вещества в виде пара удаляются с другой стороны мембраны. Низкие значения парциальных давлений проникающих через мембрану компонентов обеспечиваются путем создания вакуума со стороны паровой фазы или с помощью газа-носителя (см. раздел 18). В отличие от большинства других мембранных процессов, для проведения которых не требуется подвода тепла, процесс испарения через мембрану требует испарения части исходной жидкой смеси. Поэтому данный метод разделения целесообразно использовать для выделения из жидких смесей компонентов, содержащихся в небольших количествах. Разделение смеси достигается за счет того, что различные компоненты смеси переносятся через мембрану с различной скоростью. С помощью испарения через мембрану могут эффективно разделяться азеотропные жидкие смеси, проявляющие положительные отклонения от закона Рауля, разделение которых при помощи обычного процесса ректификации невозможно. В настоящее время испарение через мембрану используется главным образом для дегидратации, т. е. удаления воды из органических растворителей или их смсссй. [c.32]

    Для разделения азеотропных смесей на компоненты в лабораторных условиях используют методы, основанные на связывании одного из компонентов разделяемой смеси в прочное химическое соединение. Например, для получения абсолютного этанола азеотропную смесь, содержащую 4 % воды, обрабатывают прокаленным оксидом кальция (СаО) или сульфатом меди ( USO4). Вода образует гидроксид кальция [ a(0H)2l или медный купорос ( uSO -SHaO). Оставшийся этанол можно отогнать или отфильтровать от осадка. [c.222]

    Полное разделение двух летучих веществ удается при помощи не очень эффективной колонны лищь тогда, когда на кривой кипения смеси отсутствует максимум или минимум [567—570] , который часто наблюдается у смеси многих неорганических веществ и даже у смеси углеводородов. В таких случаях, помимо азеотропной смеси, можно получить только один компонент в чистом виде. Однако иногда можно создать более благоприятные предварительные условия для разделения веществ за счет добавления подходящего третьего компонента. В системе С2Н5ОН (т. кип. 78,30°) — Н2О, в которой образуется азеотропная смесь, содержащая 4,43% HgO (т. кип. 78,15°), после добавления бензола вначале отгоняется третичная азеотропная смесь (т. кип. 64,85°) таким путем (или же за счет добавления трихлорэтилена) можно легко удалить всю Н2О азеотропная перегонка), последующее отделение добавленного вещества не вызывает затруднений. Кроме того, при образовании азеотропной смеси можно использовать перегонку при пониженном давлении так, С2Н5ОН и Н2О не образуют азеотропной смеси при давлении ниже 75 мм рт. ст. В некоторых случаях эффективного разделения можно достигнуть при помощи особого метода экстрактивной перегонки [572]. Любой труднолетучий экстрагент, смешивающийся при температуре перегонки во всех соотношениях с другими компонентами, вводят в процессе перегонки в колонну сверху. Благодаря этому соотношение давления паров внутри ректификационной колонны смещается в благоприятную сторону, а сам экстрагент в большинстве случаев отделяют повторной перегонкой часто также при охлаждении происходит расслаивание. В некоторых случаях азеотропные смеси можно разделить дробной кристаллизацией, методами адсорбции или термодиффузии [573]. [c.482]

    Таким образом, без применения других методов разделения и добавления новых веществ (а их потребуется несколько) удается разделить смесь со сложной структурой диаграммы фазового равновесия на чистые компоненты. Этот принцип может быть использован для разделения и других азеотропных смесей. Однако в настоящее время он не нащел еще практического применения. [c.193]

    Кроме перечисленных основных требований к разделяющим агентам и экстрагентам, весьма существенна степень чистоты конечных продуктов, получаемых по проектируемой технологической схеме. Чистота является одним из основных требований, предъявляемых к мономерам и другим полупродуктам, причем важен не только количественный, но и качественный состав примесей. Ряд примесей, содержащихся в полупродуктах в ничтожных долях, могут, например, оказаться сильнейшими ядами для последующих каталитических процессов или резко ухудшать качество полимера, получаемого в процессе полимеризации. Может случиться, что введенный на определенной стадии технологического процесса разделяющий агент или экстрагент окажет, даже в виде незначительных примесей, нежелательное действие на последующих стадиях. Сказанное выше нельзя понимать таким образом, что применения экстрактивной и азеотропной ректификации и экстракции следует по возможности избегать. Эти методы в настоящее время интенсивно развиваются и весьма перспективны. Они имеют бо.льшое практическое значение и с успехом используются в промышленности, однако все же являются не единственно возможными методами разделения азеотропных смесей. Добавление в разделяемую смесь нового вещества в жидком или твердом состоянии является лишь средством, в результате которого достигаются желательные изменения диаграммы фазового равновесия. И если изменение равновесных соотношений является обязательным условием разделения азеотропных смесей, то средства осуществления такого изменения не исчерпываются только введением в исходный раствор новых веществ. [c.187]

    Следует подчеркнуть, что этот процесс необходимо рассматривать как новый. Вместо ког[центрирования одного из компонентов смеси путем диффузии через непористые мембраны с получением целевого продукта нужной концентрации может оказаться более экономичным сочетать этот процесс с другими традиционными методами разделения, например с перегонкой, и ограничить использование диффузии через мембраны только разделением азеотропных систем, а дальнейшее разделение потоков, выходящих из диффузионной ячейки, осуществлять перегонкой, получая, с одной стороны, индивидуальный продукт и, с другой, азеотропную смесь, которую снова возвращают на дис )фузион-ное разделение. [c.100]

    Несмотря на то, что разница в точках кипения соответствующих азеотропных смесей может бытк значительно меньше, чем таковая у самих изомеров, этот процесс может быть успешно использован вследствие больхлей растянутости линий жидкость — пар на диаграмме состав—температура для двух азеотропных смесей (рассматриваемых как бинарные системы) по сравнению с бинарной системой, состоящей из двух этих изомеров. В тех случаях, когда требуется очистить небольшие количества вещества в колонне, имеющей емкость и задержку слишком большую, чтобы можно было применить прямую перегонку, может быть использована азеотропная перегонка. В этом случае следует брать вещество, образующее азеотропную смесь, кипящую значительно ниже, чем исходная смесь, чтобы иметь возможность получать азеотропный дистиллат со сколь угодно низкой концентрацией данного соединения. Применяя избыток вещества, образующего азеотропную смесь, можно всю взятую для разделения смесь вывести из колонны в виде дистиллата. Этот метод очистки окажется непригодным, если не будет заметной разницы в точках кипения между азеотропной смесью, образуемой загрязнением, и азеотропной смесью выделяемого соединения. В случае же образования тройной азеотропной смеси,состоящей из основного вещества, загрязнения и вещества, образующего азеотропную смесь, загрязнение может быть удалено ценой потери определенного количества выделяемого соединения. Особые преимущества очистки с помощью азеотропной перегонки проявляются в тех случаях, когда вещество, подлежащее очистке, склонно к полимеризации, разложению или другим реакциям уже при обычной температуре его кипения. Добавление подходящего вещества, образующего азеотропную смесь, служит в этих случаях как средством для снижения температуры кипения, так и в качестве разбавителя данного вещества. [c.92]


Смотреть страницы где упоминается термин Азеотропные смеси методы разделения: [c.300]    [c.13]    [c.364]    [c.186]    [c.105]    [c.90]    [c.96]    [c.200]    [c.78]    [c.228]    [c.319]   
Практикум по органическому синтезу (1976) -- [ c.33 , c.34 ]

Практикум по органическому синтезу (1976) -- [ c.33 , c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропная смесь

Методы азеотропный

Методы определения возможных составов продуктов разделения азеотропных смесей в системе колонн

Методы разделения

Определение числа теоретических ступеней разделения по методу Мак-Кэба и Тиле для смесей с кривыми равновесия, имеющими точку перегиба и азеотропную точку

Смеси разделение

Смесь азеотропная Азеотропные рас



© 2025 chem21.info Реклама на сайте