Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсные методы дефектоскопии скорости

    Эхо-импульсный метод измерения толщины основан на регистрации времени прохождения ультразвукового импульса через изделие. Эхо-импульсный толщиномер работает так же, как и ультразвуковой дефектоскоп. Пьезоэлектрический преобразователь при воздействии электрического сигнала от импульсного генератора посылает в изделие импульс упругих колебаний, который распространяется со скоростью, зависящей от химического [c.50]


    Способы измерения скорости и коэффициента затухания УЗ-импульсным методом с помощью обычного дефектоскопа и ряд приемов для повышения точности измерения рассмотрены в разд. 1.1.3. Далее рассмотрены способы измерения скорости и коэффициента затухания, более удобные для практических исследований. В частности, при анализе физико-механических свойств (особенно при экспериментальных исследованиях) используют методы собственных частот колебаний ОК в интегральном и локальном вариантах. При практическом контроле часто не требуется точного измерения скорости и особенно коэффициента затухания. Вместо этого ограничиваются сравнением этих свойств в контролируемом объекте и образцах. [c.733]

    Измерение скоростей распространения продольных и поперечных ультразвуковых волн, а также поглощения ультразвука в твердых телах позволяет исследовать ряд вопросов, относящихся к физике твердого тепа. Из них наиболее ван<ными по своему использованию в технике являются метод определения упругих постоянных и метод измерения величины зерна в металлах. Хотя подобные методы исследования применимы, кроме металлов, и к ряду других материалов, однако большинство экспериментальных данных на сегодняшний день относится к исследованию металлов. Это в некоторой стенени объясняется тем, что аппаратура, предназначенная для измерения скорости и поглощения ультразвука, во многом аналогична импульсным ультразвуковым дефектоскопам, применяемым для исследования металлов. Поэтому первые опыты в этом направлении проводились с помощью упомянутых выше дефектоскопов. И лишь в дальнейшем, в связи с необходимостью повышения точности измерений и расширения диапазона частот, для этих целей были изготовлены специальные установки, позволившие существенно расширить круг вопросов, решаемых данным методом. [c.146]

    В дефектоскопии интерес представляет также определение групповой скорости Сгр. которая характеризует перемещение импульсного сигнала и его искажения. Следует отметить, что групповая скорость нормальных волн может значительно отличаться от фазовой. Для каждой моды величину с р рассчитывают численным методом, используя приведенные выше дисперсионные кривые. [c.8]

    Определенные трудности возникают при измерении скорости поперечных волн. При вводе таких волн нормально к поверхности трудности связаны с необходимостью возбуждения волн с колебаниями частиц, параллельными поверхности ввода. Для возбуждения таких типов волн в металлах применяют ЭМА-метод (см. разд. 1.2.4). В неметаллах такие волны возбуждают, применяя пьезопластины с соответствующим типом деформации (например, кварц У-среза). Пластину приклеивают к поверхности ввода или прижимают через слой вязкой смазки. Способы измерения скорости поперечных волн импульсным методом с помощью обычного дефектоскопа и наклонных преобразователей рассмотрены в разд. 1.1.3. [c.736]


    Контроль листовых материалов. Трудность массовой проверки листовой стали импульсным методом заключается в том, что для осуществления контроля листов в производственном потоке необходимо довести скорость проверки листов до 2 3 м в минуту [1011. Разумеется, прозвучивание листа путем перемещения искательной головки (щупа) импульсного дефектоскопа по всехг поверхности листа занимает несравненно большее время. К этому следует еще добавить недостаточную чистоту поверхности листов, поступающих с прокатного стана, что не обеспечивает хорошего акустического контакта щупов с поверхностью прозвучиваемого листа. В силу этих причин для высококачественной листовой стали, идущей на изготовление топок, котлов и других ответственных агрегатов, где не допускается наличие в толще листов дефектов (раковин, трещин и расслоений), могущих вызвать выход из строя всей установки, испытания ведутся с помощью незатухающих колебаний при погружении контролируемых листов в воду. [c.129]

    Контроль временным методом осуществляют импульсным дефектоскопом со стробирующей системой, позволяющей точно фиксировать время прихода сквозного сигнала. Специфические помехи, свойственные этому методу, связаны со случайными изменениями толщины ОК, контактных слоев и скорости распространения звука в материале эти же факторы определяют предельно малую длительность стробирующего импульса. 1 [c.158]

    Велосиметрический метод использует влияние дефектов на скорость распространения упругих волн в изделии и длину пути волн между излучателем и приемником упругих колебаний. В контролируемом изделии возбуждают непрерывные или импульсные низкочартот-ные УЗК (20. .. 70 кГц). Дефекты регистрируют по изменению сдвига фазы принятого сигнала или времени распространения волны на участке между излучающим и приемным вибраторами дефектоскопа. Эти параметры не зависят от силы прижатия преобразователя к изделию, состояния акустического контакта и других факторов, поэтому метод отличается повышенной стабильностью показаний. [c.270]

    При использовании ультразвукового метода для возбуждения продольных и поперечных колебаний в испытуемых образцах применяются соответственно кристаллы X- и Г-срезов. Продольные волны вводятся в образцы через промежуточный слой смазки, например слой трансформаторного масла. Для ввода поперечных волн необходим слой смазки, обладающий упругостью сдвига. В этом случае применяется минеральный воск, полиизобутилен и др. Ультразвуковые волны, прошедшие через испытуемый образец, принимаются приемным кристаллом и через усилитель подаются на экран электронно-лучевой трубки. Интервалы времени между двумя последовательно отраженными импульсами и будут характеризовать величину скорости распространения звука. При использовании для этих целей ультразвукового импульсного дефектоскопа точность измерений величины скорости распространения звука составляет1 — 3%. Следовательно, с такой же (или несколько меньшей) точностью могут быть измерены и упругие постоянные материалов. Однако следует отметить, что это относится к материалам с малой величиной рассеяния звука при постоянной температуре во всей толще испытуемого изделия. В противном случае скорость распространения звука будет различной для разных участков испытуемого образца и интерпретация результатов измерений будет затруднительной. Это, естественно, скажется на точности данного метода. Несмотря на это, ультразвуковой метод измерения упругих постоянных твердых тел является вполне надежным, и с помощью его уже получено много полезных результатов. Так, он с успехом нашел применение для измерения модулей упругости высоковольтных изоляторов, для которых требуется повышенная механическая прочность [97]. Простота и высокая точность измерений, характеризующие импульсный ультразвуковой метод, обусловливают широкое применение этого метода для измерения упругих постоянных каучуков [20], пластмасс, стекла [130], фарфора [131], бетона [109], льда [132] и металлов. [c.155]


Библиография для Импульсные методы дефектоскопии скорости: [c.842]   
Ультразвук и его применение в промышленности (1958) -- [ c.156 , c.164 ]




ПОИСК







© 2025 chem21.info Реклама на сайте