Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поиск экстремума, метод крутого восхождения

Рис. У1-7. Графический поиск экстремума методом крутого восхождения. Рис. У1-7. Графический <a href="/info/50932">поиск экстремума методом</a> крутого восхождения.

Рис. 33.3. Поиск экстремума с помощью метода крутого восхождения Рис. 33.3. <a href="/info/1608897">Поиск экстремума</a> с помощью метода крутого восхождения
    В рамках планирования эксперимента есть по крайней мере два широко распространенных метода поиска экстремума, т. е. оптимизации. Этот метод Бокса — Уилсона или метод крутого восхождения [15] и метод последовательной симплексной оптимизации (ПСМ) [16]. Между ними наблюдается некоторая конкуренция, но каждый из них использовался сотни раз в различных задачах аналитической химии. Попытка дать систематический обзор этих приложений потребовала бы целого тома. Впрочем, мы еще скажем ниже о библиографических источниках. [c.7]

    Крутого восхождения метод — математический метод планирования эксперимента на стадии поиска экстремума функции отклика основан на шаговом движении в область оптимума по градиенту линейного приближения. [c.264]

    На практике такой подход часто реализуют методом т. наз. крутого восхождения (метод Бокса-Уилсона). Выбирают начальную точку, в окрестности к-рой проводят ПФЭ или ДФЭ (в зависимости от числа факторов) по его результатам рассчитывают параметры мат. модели 1-го порядка. Если модель адекватна, с ее помощью определяют направление изменения факторов, соответствующее движению к экстремальному значению целевой ции в направлении градиента или антиградиента (соотв. при поиске максимума или минимума). Движение в выбранном направлении осуществляют с помощью последовательно выполняемых опытов и производят до тех пор, пока отклик изменяется желаемым образом. В найденной наилучшей (для выбранного направления) точке снова выполняют ПФЭ или ДФЭ и т.д. Изложенную процедуру повторяют до построения адекватной модели на каждом этапе. Неадекватность модели, полученной на очередном этапе, свидетельствует о том, что, возможно, достигнута область экстремума, в к-рой линейную модель уже нельзя использовать. Для уточнения положения экстремума в этой области можно применять модель 2-го порядка, построенную посредством соответствующих планов. [c.560]

    Процедура поиска оптимума напоминает изложенную выше оптимизацию методом крутого восхождения , но еще проще и не требует описания даже исходной области. Первый этап оптимизации симплекс-методом заключается в выборе центральной точки я построении вокруг нее правильного симплекса. Центральная точка может выбираться практически в любом месте, и нет необходимости начинать исследование вдалеке от ожидаемого экстремума, как это рекомендовалось в методе крутого восхождения . Однако выбор интервалов варьирования факторов (масштабы по осям) не совсем произволен — они не должны быть ни слишком большими, ни слишком малыми, что определяется ходом собственно поиска экстремума. После реализации симплекс-плана первого порядка сравнивают результаты опытов и выбирают наихудший. Можно полагать, что экстремум функции будет находиться от центра в направлении, противоположном радиусу-вектору наихудшего опыта, поэтому исходный симплекс опрокидывают в направлении ожидаемого экстремума. Отбросив наихудший опыт и поставив новый в симметричной точке, мы тем самым построим новый, правильный симплекс, с которым вся процедура. поиска новой наихудшей точки, опрокидывания симплекса и т. д. повторяется вновь. [c.457]


    Следует иметь в виду, что симплексный метод, так же как и метод крутого восхождения, является локальным методом поиска экстремума. Если существует несколько экстремумов критерия оптимальности, то этот метод позволяет найти тот из них, который расположен ближе к точкам исходного симплекса. Поэтому, если есть подозрение о существовании нескольких экстремумов критерия оптимальности, то нужно осуществить их поиск, каждый раз начиная оптимизацию из новой области факторного пространства. Затем следует сравнить между собой найденные оптимальные условия и из всех вариантов выбрать наилучший. [c.25]


Методы кибернетики в химии и химической технологии (1971) -- [ c.155 , c.200 , c.201 , c.210 , c.211 ]

Методы кибернетики в химии и химической технологии (1971) -- [ c.155 , c.200 , c.201 , c.210 , c.211 ]

Методы кибернетики в химии и химической технологии 1968 (1968) -- [ c.131 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Крута

Метод поиска

Шаг поиска



© 2024 chem21.info Реклама на сайте