Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитическая химия задачи

    Ионометрия - современное прогрессивное направление в развитии потенциометрического метода анализа и исследования. Основная задача ионометрии заключается в разработке, изучении и примене1у1и разнообразных ионоселективных электродов, обратимых и достаточно селективных к различным катионам и анионам. К ионометрии относятся давно известный метод -рН-метрия и новые методы прямой потенциометрии - катионо-метрия и анионометрия. Ионометрия находит широкое применение в науке и технике в технологии для автоматического конт роля производственных процессов, при анализе и контроле чистоты водного пространства и окружающей атмосферы, в аналитической химии, биологии, геологии, почвоведении, медицине, океанологии и т.д. С помощью метода ионометрии успешно решаются задачи анализа и исследования применительно к сложным многокомпонентным системам. [c.38]


    Помимо важной роли в комбинированных методах анализа меюды разделения и концентрирования имеют для аналитической химии суперэкотоксикантов самостоятельную ценность. Далеко не всегда можно проанализировать образец без предварительного выделения определяемых соединений из природной матрицы. При этом, как правило, возникает необходимость их концентрирования по отношению к матричным компонентам, присутствующим в растворе или в газовой фазе. Даже такие методы, как хромато-масс-спектрометрия и газовая хроматография в сочетании с ИК-спектроскопией, не всегда могут решить задачи следового анализа. Целью концентрирования является снижение нижнего предела обнаружения, тогда как разделение позволяет упростить анализ и устранить влияние мешающих веществ [c.199]

    Аналитическая химия, задачей которой является определение в исследуемых веществах наличия тех или иных элементов или их групп (метод качественного анализа), а также определение их количественных соотношений (метод количественного анализа), нашла очень широкое применение не только в научно-исследовательских лабораториях и институтах, но также на заводах, на местах разработок различных месторождений и т. д. [c.276]

    Важность контроля за содержанием загрязняющих веществ в объектах окружающей среды постоянно ставит перед экологической аналитической химией задачи совершенствования аналитических методик. Сложность проблемы корректного определения в воздухе, в воде и почве очень низких содержаний токсичных химических соединений и надежной идентификации контролируемых компонентов предъявляет высокие требования к метрологическим характеристикам аналитических методик (достоверность идентификации, предел обнаружения, селективность, точность и др.). [c.3]

    Эта задача может быть предложена для решения учащимся, изучающим на факультативных занятиях аналитическую химию. [c.48]

    Приемы работы в аналитической химии. Задача химика-аналитика — получение информации о природе и составе исследуемого материала. Для решения этой задачи аналитик в соответствии со свойствами вещества подбирает подходящий метод анализа и при необходимости комбинирует его с методом разделения. Надежный результат анализа можно получить только при оптимальных условиях измерения (Оу- min). Использование характерных [c.13]

    Кафедры аналитической химии многих вузов, по просьбе авторов, сообщили свои пожелания по указанным вопросам. Общее мнение сводится к тому, что в учебнике должны найти отражение современные направления развития аналитической химии. Многие кафедры в некоторой степени разрешают на практике трудную проблему модернизации преподавания общего курса количественного анализа без существенного увеличения объема курса. В ряде вузов дается характеристика не только давно известных и хорошо зарекомендовавших себя методов, как колориметрия, полярография и др., но и сравнительно новых методов, как комплексонометрия, кулонометрия, кинетические методы, высокочастотное титрование, радиохимические методы и др. Во многих вузах введены задачи по неводному титрованию, потенциометрическому определению ванадия, колориметрическому определению меди, железа, титана. [c.8]


    Аналитическая химия — наука о методах определения химического состава веществ. Целью количественного анализа является определение количественных соотношений составных частей различных веществ или материалов. Задача настоящего курса заключается в изучении теоретических основ и практических приемов основных химических методов количественного анализа. [c.9]

    Эти несколько слов я считал необходимым сказать в противовес имеющемуся стремлению придавать комплексометрии большее значение, чем она может иметь на самом деле, хотя в настоящее время комплексометрия является очень важным разделом аналитической химии. Задача определения нескольких катионов в растворе решается следующими способами  [c.408]

    Производство и практическое применение чистых и сверхчистых препаратов РЗЭ поставило перед аналитической химией задачу создания более чувствительных, точных и экспрессных методов их анализа. [c.3]

    В результате уровень подготовки учащихся сильно отстает от современного уровня науки. В некоторой степени это положение, возможно, будет исправлено введением спецкурсов, хотя, вероятно, главной задачей последних будет ознакомление только с аппаратурными методами, с методами автоматического контроля и т. п. Во всяком случае, несомненно, что положение с учебниками по количественному анализу обстоит значительно хуже, чем с учебниками по другим отраслям химии. После ознакомления с общим курсом неорганической, органической и физической химии, студент в состоянии понять основное содержание статей в соответствующих научных журналах. Однако после изучения общего курса количественного анализа студент совершенно не может понять даже, о чем идет речь в любом современном журнале по аналитической химии известно, что в этих журналах рассматриваются методы фотометрии, полярографии, хроматографии, комплексонометрии и др., о которых студент не имеет представления. Это положение, несомненно, должно быть исправлено, хотя бы в такой же степени, как это имеет место в других общих курсах химии. [c.7]

    Если говорить о кадрах, то проблемами эколого-аналитического мониторинга зафязняющих веществ сейчас в основном занимаются специалисты-практики самого разного уровня подготовки, ощущающие, как правило, недостаток фундаментальных знаний, которые дает классический университет. Несмотря на трудности в преподавании аналитической химии как междисциплинарной науки, в мире наблюдается рост числа специалистов-аналитиков. Каждый пятый выпускник химических факультетов университетов считает себя химиком-аналитиком и их число, по-видимому, будет постоянно расти в связи с повышением внимания к проблемам окружающей среды. Поэтому подготовка специалистов, %ля эколого-аналитического контроля является одной из основных задач высшей школы. Естественно, что рост их числа небесконечен. Технический профссс в аналитическом приборостроении предоставляет в распоряжение аналитиков все более современные средства контроля, действующие автономно и автоматически непосредственно на месте отбора проб. Однако аналитик-эколог и в будущем останется важнейшей фигурой, поскольку только специалист может сделать вывод о содержании зафязняющих веществ в окружающей среде [c.319]

    Заметим, что, как правило, суперэкотоксиканты присутствуют в окружающей среде в ничтожно малых количествах, на уровне следов. Поэтому их определение в природных матрицах зачастую сродни поиску иголки в стоге сена и влечет за собой использование специальных методов пробоотбора и подготовки образцов к анализу. Сложность аналитической задачи, необходимость получения надежных и достоверных данных заставляет применять для определения суперэкотоксикантов наиболее чувствительные и селективные методы современной аналитической химии, включая те, которые моделируют процессы в живой природе Кроме того, самостоятельную проблему представляют метрологические аспекты определения суперэкотоксикантов на уровне следовых количеств. [c.5]

    Задача аналитической химии как научной дисциплины — получение информации об исследуемых вещественных системах, а им(шно о природе составных частей (качественный анализ), о числе составных частей (количественный анализ), о пространственном строении и распределении составных частей (структурный анализ), об изменении во времени перечисленных выше характеристик (анализ процессов). Кроме того, аналитическая химия включает развитие и оценку методов анализа, необходимых для получения указанной информации. [c.430]

    Первая реакция, естественно, привела к выбору методов, удовлетворяющих новым требованиям, из классических, уже имеющихся методов анализа. Наряду с этим стали разрабатываться и принципиально новые. Расширение области применения автоанализаторов обусловило создание автономных, дистанционных, миниатюрных и селективных датчиков состава, для обозначения которых в современной научной литературе часто используют термин химический сенсор или просто сенйор. Появление таких терминов, как промышленная аналитическая химия, сенсор, сенсорный анализ, и нечеткость их определений говорят о формировании новой области аналитической химии, новой области знания, ранее не отраженной в понятиях, не зафиксированной отдельным словом. Развитие этой области обусловлено новыми задачами аналитической химии, задачами контроля окружающей среды, автоматизации химических и биотехнологических производств. [c.18]


    Технический прогресс и достижения науки в XX в. способствовали широкому развитию аналитической химии. Развитие металлургии, химической технологии, медицины, физики, геохимии и других наук, а также техники ставит много новых важных вопросов перед аналитической химией кроме того, развитие техники и смежных областей науки дает химикам-аналитикам новые теоретические данные и новые средства для решения различных задач. [c.13]

    Методы аналитической химии основаны на общехимических законах и на химических свойствах элементов. Выделим некоторые разновидности химико-аналитических работ в зависимости от решаемых задач. [c.73]

    В то время как изменение естественного содержания элементов в воде (реках, грунтовых водах) можно легко установить и не использовать эту воду для питья, при загрязнении атмосферы это сделать гораздо труднее воздушные массы быстро и беспорядочно перемещаются и, кроме того, все дышат окружающим воздухом. Поэтому контроль чистоты атмосферы — важнейшая задача аналитической химии следовых количеств. [c.408]

    В аналитической химии существуют методы разделения и методы определения. Основной задачей методов разделения является главным образом отделение мешающих компонентов или выделение определяемого компонента в виде, пригодном для количественного определения. Однако нередко определение интересующего компонента производится прямо в пробе без предварительного разделения. В некоторых случаях методы разделения и определения настолько тесно связаны между собой, что составили неразрывное целое. Представителем таких методов является газовая хроматография. В процессе хроматографирования смесь разделяется на компоненты, и количественно определяется содержание компонентов. Такие методы анализа иногда называют гибридными, подчеркивая тесную связь отделения и определения как характерную особенность. [c.13]

    Примесей. Для решения такой трудной задачи необходимо объединение методов аналитической химии следовых количеств и прецизионной аналитической химии. Результаты анализов одной и той же пробы на содержание следовых количеств веществ, выполненных в разных лабораториях, часто существенно различаются (иногда даже на порядок). Например, в семи лабораториях проводили определение содержания углерода в образце молибдена и получили следующие тщательно проверенные средние значения 5 11 10 16 21 10 и 9 млн . Идеальным условием определения следовых количеств элементов в пробе является их равномерное распределение в ней, как, например, в гомогенной жидкой или газообразной фазе в этом случае ошибка анализа определяется только правильностью и воспроизводимостью метода. Анализ твердых веществ усложняется неравномерностью распределения в них следовых количеств элементов. В этом случае проба может быть неоднородной по чистоте, и, следовательно, не представительной. В целом вероятность неравномерного распределения следовых количеств элементов возрастает с уменьшением их содержания. [c.412]

    Аналитическая химия состоит из двух разделов качественного анализа н количественного аналнза. При помощи качественного ан лиза устанавливают, из каких элементов (или ионов) состоит исследуемое вещество. Задачей количественного анализа является определение количественного содержания элементов, ионов или химических соединений, входящих в состав исследуемых веществ и материалов. Результаты качественного анализа не дают возможности судить о свойствах исследуемых материалов, так как свойства определяются не только тем, из каких частей состоит иссле-дус мый объект, но и количественным их соотношением. Например, двг различных минерала — каолинит и пирофиллит — имеют одинаковый качественный состав н состоят из Si02, AI2O3 и Н2О. Различие в свойствах этих минералов определяется различным соот-HouienneM названных компонентов. [c.9]

    Высокими темпами стала развиваться аналитическая химия в нашей стране после Великой Октябрьской социалистической революции. Интенсивная работа по изучению природных ресурсов страны, развитие горного дела, металлургии, машиностроения, химии и других важных отраслей промышленности предъявили к аналитической химии обширные и многообразные требования. Возникла, в частности, острая необходимость в стандартизации методов анализа и разработке экспрессных методик. Эти задачи были успешно решены. [c.11]

    Определение содержаний порядка 10 % и менее стало повседневной потребностью многих отраслей промышленности, поскольку содержание примесей на этом уровне стало определять качество продукции. Эти сложные задачи были решены путем использования новых методов разделения, концентрирования и определения. Наибольшее практическое значение приобрели экстракционные, хроматографические, оптические и электрохимические методы. Интенсивно развиваются в последнее время атомно-абсорбционная спектроскопия, рентгено-флуоресцентные и резонансные методы, кинетические методы анализа и некоторые другие. Современная аналитическая химия приобретает новые черты — она становится более экспрессной, точной, автоматизированной, способной проводить анализ без разрушения и на расстоянии. [c.12]

    С тех пор как нефтеобрабатывающая промышленность начала частично пользоваться отбросами кислот и щелочей, получаемых при рафинщх>вке нефтяных дериватов, оценка этих продуктов стала одной из очередных задач аналитической химии нефти. В то время как щелочь при очистке тратится более или менее продуктивно, т. е. идет на нейтрализацию кислых продуктов, серная кислота вводится в общем в громадном избытке, и, вероятно, не больше 15—20% от взятого веса ее активно участвуют в процессе образования новых соединений с непредельными и основными примесями нефти или ее дестиллатов. Как известно, это объясняется отчасти оводнением кислоты и техническими прнчинами. Контрольная лабораторная очистьса до заранее заданной цветовой марки б лаборатории требует несколько меньших количеств кислоты, нежели в заводских условиях. [c.344]

    Повышенный интерес к люминесцентному анализу за последние годы вызван поставленной перед аналитической химией задачей определения малых количеств различных элементов — до миллионных долей процента. Преимущество люминесцентного химического анализа перед обычным — его исключительная чувствительность. Люминесценцию можно наблюдать при очень малых концентрациях люминесцирующего вещества. Как правило, методика выполнения люминесцентных реакций микрохимическая капельная, микрокри-сталлоскопическая и т. д. Наличие искомого вещества устанавливают или по появлению люминесценции, или по ее тушению, полному или [c.148]

    Все методы анализа основаны на использовании зависимости физико-химического свойства вещества, называемого аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах химического анализа в качестве такого свойства используются или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ). Однако химические методы анализа не в состоянии были удовлетворить многообразные запросы практики, особенно возросшие как результат научно-технического прогресса и развития новых отраслей науки, техники и народного хозяйства в целом. Наряду с черной и цветной металлургией, машиностроением, энергетикой, химической промышленностью и другими традиционными отраслями большое значение для промышленноэнергетического потенциала страны стали иметь освоение атомной энергии в мирных целях, развитие ракетостроения и освоение космоса, прогресс полупроводниковой промышленности, электроники и ЭВМ, широкое применение чистых и сверхчистых веществ в технике. Развитие этих и других отраслей поставило перед аналитической химией задачу снизить предел обнаружения до 10 . .. 10 °%. Только при содержании так называемых запрещенных примесей не выше 10 % жаропрочные сплавы сохраняют свои свойства. Примерно такое же содержание примеси гафния допускается в цирконии при использовании его в качестве конструкционного материала ядерной техники. (Вначале цирконий был ошибочно забракован как конструкционный материал этой отрасли именно из-за загрязнения гафнием). Еще меньшее содержание загрязнений (до 10 %) допускается в материалах полупроводниковой промышленности (кремнии, германии и др.). Существенно изменяются свойства металлов, содержание примесей в которых находится на уровне 10 % и меньше. Например, хром и бериллий становятся ковкими и тягучими, вольфрам и цирконий становятся пластичными, а не хрупкими. Определение столь малых содержаний гравиметрическим или титриметрическим методом практически невозможно, и только применение физико-химических методов анализа, обладающих гораздо более низким пределом обнаружения, позволяет решать аналитические задачи такого рода. [c.4]

    Успехи микрорадиоэлектроники к 1965 г. поставили перед аналитической химией задачу разработки методов высокочувствительного анализа тонких эпитаксиальных пленок кремния, германия, арсенида галлия и др. Решение этой задачи осложнялось несколькими обстоятельствами малой толщиной анализируемой пленки (3—10 мк), большой глубиной [c.6]

    Природные матрицы являются одними из наиболее сложных (в том числе и по количеству анализируемых компонентов) объектов аналитической химии, особенно в тех случаях, когда необходимо определение суперэкотоксикантов, присутствующих в следовых количествах. Кроме того, во многих ситуациях анализ не ограничивается решением тр щицион-ных аналитических задач ( чего и сколько ), а требуется ответить на не менее важные вопросы об источниках и путях попадания загрязнителей в окружающую среду [1-4 . [c.152]

    Уже давно высказывалась мысль о том, что чисто химическое исследование топлива и масел дает лишь условные методы его характеристики и что более правильны те способы, которые нозволж/г оценивать продукт в условиях его применения. Это сразу выдвигает на первый план методы исследования не химические, т. е. механические, физические и др. Поэтому аналитическая химия нефти за последние годы испытала не столь глубокие изменения, но и онн все-таки велики, особенно по линии бензина, крэкинг-га)ЗОВ и еще некоторых продуктов. Нефтяная химия преследует весьма различные задачи применение нефти охватывает громадные облакля техшики и науки вообще, поэтому составление тр его издания книги представляет более сложную задачу, чем составление первого, когда химия нефти отражала на себе результаты продолжительного и медленного роста нефтяной промышленности. [c.3]

    Нельзя сказать, чтобы проблемам определения суперэкотоксикантов ранее не уделялось должного внимания. Достаточно вспомнить, что такой анализ играет важную роль при решении задач санитарии и охраны труда в атомной и химической промьппленности, в контроле качества пищевых продуктов и фармацевтических препаратов, чему посвящена обширная литература [5-11]. Однако большинство работ этого плана по своей сути мало отличается от обычного определения примесей на уровне микро- и ультрамикроконцентраций. Качественные изменения произошли при решении задач экологии, медицины и других областей человеческой деятельности. Именно тогда на основе достижений физических и физикохимических методов анализа, прежде всего хроматографии и масс-спектрометрии, сформировалась самостоятельная область аналитической химрга - анализ суперэкотоксикантов. В настоящее время аналитическая химия суперэкотоксикантов имеет свои разработки по пробоотбору, выделению и разделению анализируемых компонентов, методам детектирования следовых количеств загрязнителей и др. Развитие этой области тем или иным образом оказьшает воздействие и на другие дисциплины, вызывающие в настоящее время повьппенный интерес со стороны широкой общественности, в частности на биохимию, клиническую химию и медицину, для которых проблема определения токсичных веществ на следовом уровне является весьма актуальной. [c.152]

    В аналитической оптической молекулярной спектроскопии наблюдают и исследуют аналитические сигналы в области 100— 800 нм, вызванные электронными переходами внешних валентных электронов. Поглощение излучения в ИК- и микроволновой области, связанное с изменением вращения и колебания молекул, часто используют в целях идентификации различных со-гдиненнй. Методы аналитической оптической молекулярной спектроскопии удобны для решения практических задач широкого профиля и имеют наибольшее значение в аналитической химии. [c.52]

    Как известно, каждая наука, в том числе и аналитическая химия, имеет внутреннюю логику своего развития. Вместе с тем, на нее влияют и внешние факторы, прежде всего потребности практики, которые мохуг вызвать появление новых задач. Экологические и медико-биологические [c.5]

    Исторически для лолучения информации о качественном и количественном составе вещества прежде всего использовали химические методы, т. е. методы, основанные на получении в результате химической реакции того или иного соединения, обладающего определенными аналитическими свойствами. Эта ситуация закреплена в самом названии аналитическая химия . Поэтому классические методы аналитической химии, особенно в той части, которая касается анализа неорганических веществ, опираются прежде всего на неорганическую химию как более общую дисциплину. Кроме того, нужно есть следующее. Преподавание аналитической химии в высшей щколе имеет помимо конечной главной цели — обучение основам аналитической химии — также задачу научить химическо му мышлению. Распространено мнение (и оно вполне оправедливо), что аналитическая химия представляет собой идеальное средство для достижения этой, второй цели, иначе говоря, аналитическая химия естественно входит в структуру общехимических дисциплин вуза. Поэтому, как правило, курс классической аналитической химии, представляющий по существу неорганическую аналитическую химию, излагается В1 вузах сразу же после неорганической химии, а иногда совмещается с ней в единый курс. Именно для, такого вузовского курса и написан двухтомный учебник Анорганикум , изданный в ГДР. [c.5]

    Изучение физико-химических методов анализа прочно вошло в учебную работу многих вузов, создавших в связи с этим соответствующие учебные лаборатории. В условиях перестройки высшего образования эти лаборатории могут стать настояш,ими учебно-научными центрами, если построить их работу таким образом, тобы учебные задачи сменялись в них самостоятельными научными работами, сначала курсовыми, а затем дипломными. Конечно, все дело в том, в какой мере студенты, приходя в такой центр, смогут пополнять свои знания по аналитической химии и как в нем будет поставлено выполнение учебных работ. [c.8]

    Руководство включает основные теоретические положения неорганической, органической, физической и аналитической химии, электрохимии, термодинамики, сведения по техническому анализу, общей химической технологии, примеры решений типовых задач. Приведен обширный справочный материал по продуктам основного неорганического и органического синтеза, по строительным материалам, удобрениям, лекарственным веществам и т, д. Справочное руководство рассчитано на студентов, лабдрантов вузов и заводских лабораторий. [c.2]

    А. М. Васильев. Сборник задач по аналитической химии. Госхимиздаг, 9,1 , (302 стр.). Сборник содержит 2500 задач по качественному и количественному аиа.пизу. [c.487]

    Важной задачей аналитической химии является нахождение новых методов установления конца титрования, поскольку с этим связано расширение типов реакций, применяемых в объемном анализе. Тенденция развития направлена в сторону физических методов индикации, которые в отличие от химических не вносят изменений в аналитическую систему и тем самым обусловливают принципиально большую точность индикации. Кроме того, это способствует автоматизации титриметрических определений, что имеет большое значение для химической промышленности. Однако наиболее пригодны для автоматизации методы, не связанные с измерением объемов, например метод меченых атомов, измерение УФ- и ИК-поглощения, УФ- и рент-геноэмиссионный спектральный анализ. [c.120]

    С задачами аналитической химии следовых количеств сталкиваются в следующих случаях когда пробы для анализа достаточно, но в ней содержатся небольшие количества определяемых компонентов, и когда анализируют пробы,, содержащие сравнительно высокие концентрации определяемых компонентов, но количество пробы ограничено из-за ее ценности или малодоступности. Задачи первого рода встречаются значительно чаще. Развитие аналитической химии в обоих направлениях, т. е. решение указанных задач определения малых содержаний компонентов или анализа небольших проб, чем бы ни вызывалась постановка подобного рода задач — практическими нуждами или особенностями метода, в котором по необходимости имеют дело с пробагАи небольшого объема (например, в искровой масс-спектроскопии), — представляет важную проблему. Еще одна особенность анализа следовых количеств состоит в том, что, чем меньше содержание определяемого компонента в пробе, тем в большей степени проявляется негомогенность его распределения в твердом материале. Поэтому определение следовых количеств элементов в небольших пробах характеризуется экстремально большими величинами случайного разброса получаемых результатов. [c.406]

    Большинство аналитических методов, применяемых в компонентной аналитической химии, дают информацию и о качественном, и о количественном составе пробы. Если обозначить через 2 величину, характеризующую природу составных частей, а через у величину, характеризующую их количество, то в качестве примера можно привести постояннотоковую полярограм-му (рис. Д.174) и спектр, полученный в пламени (рис. Д.175). Таким образом, речь в данном случае идет о получении двухмерной аналитической информации. Превращение ее в одномерную в случае фотометрии пламени дало бы точки на оси z для качественного параметра (в данном случае для длин волн) и колоколообразную кривую распределения интенсивности эмиссии (количественный параметр) для определенного значения 2 (рис. Д.176,а и б). Такую одномерную аналитическую информацию используют в качественном анализе, например, при проведении классического разделения или при применении селективных цветных реакций, когда нужно получить сведения только об отсутствии или присутствии какого-либо элемента а также в количественном анализе, когда нужно только установить, какое количество определенного элемента вступило в реакцию. Не будем останавливаться на рассмотрении вопросов получения и обработки информации о структуре вещества, поскольку это не входит в задачи данной книги. [c.430]


Библиография для Аналитическая химия задачи: [c.178]    [c.60]    [c.208]    [c.58]   
Смотреть страницы где упоминается термин Аналитическая химия задачи: [c.9]    [c.3]    [c.4]    [c.6]    [c.411]    [c.6]   
Аналитическая химия Том 2 (2004) -- [ c.27 , c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая задача

Аналитическая химия

Аналитическая химия предмет и задачи

Аналитическая химия промышленные задачи

Аналитическая химия, ее задачи и значение

Аналитическая химия, ее задачи и методы

Васильев Сборник задач аналитической химии

Задачи аналитической химии применительно к исследовательским лабораториям

Задачи химии

Иерархическая структура задач аналитической химии Н Формирование гипотез. Развитие частичного решения

КАЧЕСТВЕННЫЙ АНАЛИЗ ПРЕДМЕТ, ЗАДАЧИ И МЕТОДЫ КАЧЕСТВЕННОГО АНАЛИЗА Аналитическая химия и ее задачи

Качество анализа и задачи аналитической химии

ОГЛАВЛЕНИЕ j Аналитическая химия, ее задачи и значение

Общие вопросы Задачи аналитической химии и ее значение для общества

Основные теоретические положения аналитической химии Предмет аналитической химии, ее значение и задачи Аналитическая химия как самостоятельная химическая научная дисциплина

Предмет, задачи аналитической химии. Методы анализа

Сборники задач по аналитической химии

Теоретические основы аналитической химии Предмет и задачи аналитической химии

Частьпервая КАЧЕСТВЕННЫЙ АНАЛИЗ ПРЕДМЕТ, ЗАДАЧИ И МЕТОДЫ КАЧЕСТВЕННОГО АНАЛИЗА Аналитическая химия и ее задачи



© 2025 chem21.info Реклама на сайте