Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент полезного действия ступени разделения

    Диаметры ректификационных колонн для разделения многокомпонентных смесей определяют из тех же соображений, что и колонн для бинарной ректификации (см. разд. 3.2.4). Наиболее надежный способ расчета рабочей высоты колонны—использование опытных данных по эффективности тарелок или по значениям ВЭТС (для насадочных колонн), полученных для систем с близкими свойствами. При отсутствии таких данных можно использовать результаты расчета бинарной ректификации для отдельных пар компонентов, входящих в состав многокомпонентной системы. В частности, для оценки среднего коэффициента полезного действия ступени можно использовать график (см. рис. 3.9) для ключевых компонентов. Считают [И], что эффективность ступени выше для компонентов, обладающих большей летучестью. Применение данных по бинарной ректификации к многокомпонентной является более надежным в тех случаях, когда существенная доля сопротивления массопереносу сосредоточена в жидкой фазе. [c.144]


    Определив число теоретических ступеней разделения, обычно обнаруживают, что это число меньше числа реальных тарелок. Следовательно, реальная тарелка работает не идеально, и поэтому работу тарелки оценивают по отношению найденного числа теоретических ступеней разделения к числу реальных тарелок. Это отношение называют средним относительным обогащением или средним коэффициентом полезного действия тарелки (по Киршбауму) [103] [c.136]

    Реальные процессы массообмена протекают при условиях, отличающихся от принятых для идеального каскада. В результате этого имеет место неполное разделение фаз и отличие их составов от равновесных. Влияние этих факторов учитывается путем введения коэффициента полезного действия (к. п.д.). Различают локальный (или точечный) к. п. д. Т1л, к. п. д. ступени т]т и к. п. д. аппарата т)а. Локальный к. п.д. определяется как отношение реального изменения содержания рассматриваемого компонента в данной точке ступени к тому максимально возможному изменению, которое было бы получено при достижении равновесия и при полном разделении фаз [c.473]

    В связи с этим переход от теоретических ступеней разделения к реальным тарелкам осуществляется, как правило, путем использования коэффициентов полезного действия, полученных при обследовании аналогичных промышленных установок. [c.247]

    На интенсивность процесса разделения в числе других факторов влияют физические свойства разделяемой смеси. Интенсивность характеризуется коэффициентом полезного действия одной ступени (тарелки), величина которого при ректификации обычно составляет 50—60% нри абсорбции к. п. д. значительно ниже и не превышает 30—50% более высокие значения к. п. д. относятся к абсорбентам с низким молекулярным весом (например, Сз). [c.99]

    При разделении смеси бензол — тиофен на аналогичной колонне, имеющей II тарелок, достигался эффект 5—8,4 теоретических сгупсней, в Зависимости от состава исходной смеси. Коэффициент полезного действия ступеней составлял иг 40 до 70%. При исследовании процесса выделения стеариновой кислоты из ее смеси с пальмитиновой и олеиновой кислотами была получена практически чистая стеариновая кислота [280]. [c.223]

    В одном из патентов [38] описана схема, в которой адсорбент непрерывно пропускается в последовательном порядке через песколько зон контакта, В каждой зоне адсорбент находится во взвешенном состоянии. Адсорбент выпускается из зоны, отделяется от жидкости и затем вводится в следующую зону. Жидкость последовательно пропускается через зоны контакта в противоположном направлении. В каждой зоне по существу происходит процесс контакт шго взаимодействия, однако, чтобы достигалась желаемая степень разделения, число зон должею быть достаточно большим. Можно тaIiжe производить орошение. Анализ процесса можно выполнить при помощи диаграммы Мак-Кэба-Тиле, в которой состав внутрипоровой жидкости заменяется составом пара. Целесообразно пользоваться объемными, а не молярными концентрациями. Существенное различие при этом заключается в том, что рабочие линии процесса могут находиться в любом месте диаграммы, а линия, проходящая под углом 45° к осям, не имеет особого интереса. Число ступеней на такой диаграмме представляет собой теоретическое число зон контакта. Степень приближения к равновесию на каждой ступени экврхвалентна коэффициенту полезного действия тарелки. Можно определить среднее время, необходимое для достижения различных степеней приближения к равновесию, и рассчитать, каково должно быть оптимальное соотношение между числом ступеней и их емкостью. [c.164]


    На реальных тарелках практически никогда не достигается к. п. д. 100%, что возможно для идеальных тарелок обычно к. п. д. составляет 50—90% . Это вызвано, во-первых, тем, что перемешивание пара и жидкости в большинстве случаев не является совершенным, и, во-вторых, тем, что пар, особенно при больших скоростях, увлекает брызги жидкости на вышележащую тарелку. Кроме того, колонны, как правило, работают не с бесконечным флегмовым числом, а с конечным, так как целью любой ректификации является получение дистиллята. Как показал Аншюц [133], коэффициент полезного действия тарелок может быть учтен при графическом построении теоретических ступеней разделения по методу Мак-Кэба и Тиле. [c.97]

    Расчет процесса ректификации с помощью понятия о теоретической ступени разделения имеет преимущество общности с другими многоступенчатыми противоточными процессами разделения и позволяет использовать достижения общей теории разделения [4—6]. По ЧТСР можно рассчитывать ректификационные колонны как со ступенчатым контактом фаз (тарельчатые), так и с непрерывным контактом фаз (насадочные). В первом случае для перехода к реальным тарелкам используется коэффициент полезного действия тарелки. Во втором случае вводится величина ВЭТС (высота, эквивалентная тееретической ступени разделения), и требуемая высота слоя насадки определяется как произведение ЧТСР и ВЭТС. Однако при расчете колонн с непрерывным контактом представление о теоретической ступени разделения не отвечает реальным условиям протекания процесса и становится искусственным. В связи с этим был. разработан и в настоящее время широко применяется другой путь расчета ректификации — по числу единиц переноса. [c.54]

    Рассмотрение соотношения, дапного п уравнении (2), показывает, что размерность объема сокращается и что величина коэффициента полезного действия А обратно пропорциональна времени. Один из путей для понимания фактора А заключается в том, что его можно рассматривать, как число, эквивалентное количеству ступеней разделения в единицу времени (1 час), которое характеризует работу данной колонны. Отсюда следует, что А является величиной, получаемой при делении производительности системы (или количества смеси, проходящей через нее в течение часа) на количество вещества, находящегося на отрезке фракционирующей системы, соответствующей единице разделяющей способности, измеренной как одна теоретическая стадия разделения. Частное А является, таким образом, числом единиц стадий разделения, которое должиа проходить смесь в час через отдельную секцию колонны. [c.30]

    Принято также выделять алгоритмы, позволяющие проводить расчеты разделения неидеальных смесей, расчеты сложных колонн и их комплексов. На ранних этапах создания общих алгоритмов расчета процесса многокомпонентной ректификации введение различного рода допущений было вполне оправдано, так как основной целью работ являлась разработка методов решения систем уравнений математического описания и обеспечения сходимости итерационных схем решения. В дальнейшем введение учета неидеальности разделяемой смеси и концепции реальной ступени разделения потребовало существенной доработки созданных алгоритмов. При этом часто предпринимались попытки использования уже разработанных алгоритмов, например, основанных на концепции теоретической ступени разделения [202, 212] в решении задач с учетом реальной разделительной способности тарелки [230, 281], определяемой через коэффициент полезного действия (к. п. д. Мэрфри) [230, 281, 130] или к. п. д. испарения [230]. При этом отмечалось, что введение к. п. д. испарения более предпочтительно, чем учет разделительной способности тарелки через к. п. д. Мерфри [230, 281]. В таких алгоритмах обычно принималось допущение постоянства к. п. д. для всех ступеней разделения и относительно всех компонентов разделяемой смеси. Введение таких к. п. д. ступеней разделения приводит к большой вероятности появления на некоторых итерациях расчета отрицательных величин концентраций компонентов, что исключает возможность продолжения расчетов [130]. С целью преодоления таких трудностей обычно использовались либо различные модифицированные определения эффективности ступени разделения [230, 281], либо вводилась коррекция величин к. п. д. в процессе решения. Последнее в свою очередь может являться причиной зависимости получаемого решения от способа задания начальных приближений или даже получений неоднозначного решения задачи [130]. В то же время в результате ряда расчетных и теоретических исследований [130, 132, 183] было показано и подтверждено экспериментально, что эффективности ступеней разделения существенно различны и, кроме того, эффективность каждой ступени различна по отношению к компонентам разделяемой смеси. Возможным выходом из такой ситуации (необходимость учета указанных явлений при обеспечении достаточной устойчивости итерационных схем расчета) может служить прием, основанный на отказе от использования к. п. д. в математическом описании ступени разделения с реализацией прямого расчета, составов фаз, уходящих со ступени разделения [130]. В этом случае учиты- [c.52]



Смотреть страницы где упоминается термин Коэффициент полезного действия ступени разделения: [c.147]   
Основные процессы и аппараты Изд10 (2004) -- [ c.427 , c.428 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент полезного действия

Коэффициент полезного действия ступени

Коэффициент разделения

Ступень

Ступень ступени



© 2025 chem21.info Реклама на сайте