Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегонка стадии разделения

    Технологическая схема одной из первых комплектных установок ректификации таллового масла, оснащенных насадоч-ными колоннами с встроенными конденсаторами смешения, показана на рис. 4.11. Особенностью схемы является широкое использование принципа циркуляции продуктов насосами через теплообменники с целью подвода и отвода теплоты. Установка включает три основные части, соответствующие стадиям разделения узел сушки таллового масла, узел перегонки и ректификационную установку. [c.129]


    Уже на ранних стадиях развития перегонки было признано, что простая перегонка не пригодна для разделения жидкостей с близкими точками кипения, в связи с чем были разработаны примитивные конструкции для фрак- [c.6]

    Как показано выше, разделение низкокипящих углеводородных смесей фракционной перегонкой во многом подобно ректификации любых других групп соединений и в некоторых отношениях протекает легче, так как углеводороды по своим свойствам близки к идеальным растворам и образуют мало азеотропов. Хотя некоторые компоненты смеси приходится удалять каталитическим или другими путями, основные стадии процесса представляют собой простую ректификацию, и специфика разделения заключается только в применении температур ниже температуры воды, употребляемой обычно для охлаждения ректификационных колонн. Найдено, что путем применения умеренных давлений эту специфическую сторону ректификации углеводородных газов можно упростить так, что для всех стадий разделения, кроме первой, достаточно простого однократного охлаждения обычными хладоагентами. Как было показано выше, именно деметанизатором отличается один процесс от другого. [c.37]

    Вторая стадия разделения не может быть проведена обычной ректификацией ввиду близости температур кипения компонентов. Однако их относительная летучесть значительно изменяется в присутствии некоторых веществ, обладающих большей способностью к сорбции олефинов и особенно диенов (сгр. 46). В результате парафин становится более летучим и его можно отогнать от смеси ненасыщенных углеводородов. Такая экстрактивная перегонка осуществляется в промышленности с водным ацетоном, фурфуролом, диметилформамидом и др. Особенно эффективным оказался ацетонитрил, позволяющий четко отделить парафины от олефинов, а олефины от диенов. Из колонны экстрактивной перегонки (на рисунке не показана) отгоняется парафин (н-бутан или изопентан), возвращаемый на дегидрирование. Кубовая жидкость содержит раствор олефинов и диена в экстрагенте. Из нее в другой колонне отгоняют фракцию олефинов, поступающую на вторую стадию дегидрирования. Эта фракция содержит не менее 95% олефина. [c.679]

    Очистка сточных вод экстракцией является многостадийной. На первой стадии проводится смешение сточных вод с экстрагентом, на второй — разделение экстрагента (извлекаемого соединения и экстрагента) и рафината (сточной воды с растворимым в ней экстрагентом), на третьей — разделение извлекаемого соединения в экстрагенте методами ректификации или перегонки с возвратом экстрагента в процесс очистки сточных вод, на четвертой — выделение экстрагента из рафината путем десорбции газом или паром. Процесс осуществляется в аппаратах периодического и непрерывного действия при однократной и многократной обработке стоков экстрагентом. Многократная обработка стоков малыми дозами экстрагента более эффективна, чем однократная — большой дозой. Самостоятельное применение метода не обеспечивает очистку сточных вод в соответствии с санитарными нормами. Более того, за счет растворения экстрагента в воде происходит ее дополнитель- [c.484]


    Обычно, но не всегда экстракцию предваряют стадией разделения, такой, как перегонка с водяным паром. В качестве экстрагирующей жидкости обычно используют неполярный органический растворитель, причем применяют самые разнообразные растворители. Если экстрагирование ведется низкокипящим растворителем, то перед анализом основную часть его извлекают фракционированной перегонкой или испарением. При использовании высококипящего растворителя наиболее летучие компоненты анализируемого вещества извлекают из него перегонкой обычно при пониженном давлении. Этот способ более подходит в тех случаях, когда исследователь заинтересован в выделении низкокипящих летучих компонентов. Для вытеснения экстрагируемых соединений из водной фазы в органический растворитель часто применяют соли, такие, как хлорид или сульфат натрия. Однако иногда действие этих солей оказывается более сложным, чем обычно полагают, и вопрос об их применении следует внимательно проанализировать. В некоторых случаях соль вытесняет растворенные вещества из водной фазы, но при этом они могут появиться в парах над обрабатываемым материалом, а не экстрагироваться органическим растворителем. [c.144]

    Для получения большинства ароматических промежуточных продуктов исходят из простейших соединений, например бензола, толуола, ксилолов, фенола, нафталина, антрацена, пиридина, карбазола, пирена, применяемых в том виде, в каком они выделяются из каменноугольной смолы и получаются на установках перегонки каменноугольной смолы из неочищенных первичных продуктов. Таким образом, производство промежуточных продуктов начинается с перегонки бензола, разделения фенольных масел, перегонки и очистки конденсированных ароматических соединений, например нафталина, карбазола, антрацена. Первые стадии процессов дальнейшей переработки исходных веществ очень просты и обычно неоднократно повторяются. К таким процессам относятся хлорирование, нитрование, сульфирование, восстановление, окисление, гидролиз, карбоксилирование, плавление, алкилирование, аминирование, диазотирование, а также выпаривание, этерификация, омыление и конденсация. [c.270]

    Почти полное восстановление альдегидов в стадии гидрирования имеет важное значение для получения высокого выхода спирта особенно важно это лри производстве высококачественных высших спиртов [2 ]. В области высокомолекулярных гомологов низкая относительная летучесть спирта по отношению к альдегиду и присутствие многочисленных изомеров затрудняют, а иногда и вообще исключают возможность выделения и разделения альдегидов перегонкой. [c.274]

    Разработан низкотемпературный высокоселективный процесс диспропорционирования толуола, проводимый в жидкой фазе на цеолитном катализаторе. Основные стадии процесса жидкофазное каталитическое диспропорционирование, перегонка и разделение смеси ксилолов и регенерация катализатора. Каталитическое диспропорционирование осуществляется при температуре 260—315 °С. Выход триметилбензолов составляет около 2% (масс.) [34]. Типичный состав (% масс.) продукта, полученного при 288 °С, 4,55 МПа и массовой скорости подачи сырья 1,5 ч , следующий  [c.209]

    Большинство химических процессов, в том числе и химический анализ, включают стадию разделения смесей на индивидуальные компоненты, например фильтрацию, экстракцию, перегонку или электролиз. Дифференциальные миграционные методы применяются для разделения смесей путем принудительного перемещения их компонентов в различные участки системы. [c.11]

    АКТИВИРОВАННЫЙ УГОЛЬ-уголь с чрезвычайно развитой микро- и макропористостью (размеры микропрр составляют от 10 — 20 до 1000 А). Существует два типа А. у. Первый тип применяют для сорбции газов и паров имеет большое количество микропор, обусловливающих сильную адсорбционную способность. Второй тип используют для сорбции растворенных веществ. Оба типа А. у. должны иметь большую легко доступную внутреннюю поверхность пор. А. у. изготовляют в две стадии. 1) Выжигают древесину, скорлупу орехов, косточки плодов, кости животных при температуре 170—400° С без доступа воздуха, чем достигают удаления воды из исходного органического вещества, метилового спирта, уксусной кислоты, смолообразных веществ и других, а также развития пористой поверхности. 2) Полученный уголь-сырец активируют, удаляя из пор продукты сухой перегонки и развивая поверхность угля. Это достигается действием газов-окислителей, перегретым водяным паром или диоксидом углерода при температуре 800—900° С или предварительным пропитыванием угля-сырца активирующими примесями (хлоридом цинка, сульфидом калия), дальнейшим прокаливанием и промыванием водой. До-стагочно тонкопористый А. у. можно получить термическим разложением некоторых полимеров, например, поли-винилиденхлорида (сарановые угли). А. у. применяют для разделения газовой смеси, в противогазах, как носитель катализаторов, в газовой хроматографии, для очистки растворов, сахарных соков, воды, в медицине для поглощения газов и различных вредных веществ при кишечно-желудочных заболеваниях. [c.13]


    При разработке первых газогенераторов из-за очень сложной природы каменного угля пришли к выводу о необходимости разделения процесса на стадии сначала сухая перегонка каменного угля, а затем собственно газификация коксового остатка. Другими словами, каменные угли, содержащие значительное количество легколетучих компонентов, сначала подвергались нагреву без доступа воздуха до температуры примерно [c.152]

    Условия протекания отдельных стадий могут быть весьма различными от высоких температур (несколько тысяч градусов) в случае плазмохимического производства карбида кальция, до очень низких температур при криогенном разделении воздуха и от высоких давлений при производстве аммиака и метанола, до низких — в процессах вакуумной перегонки. [c.5]

    Повышение производительности установок получения этанола из биомассы достигается применением непрерывных способов ферментации. Для этих процессов могут использоваться такие же или модифицированные реакторы. Подача субстрата осуществляется непрерывно, а высокая концентрация дрожжевых культур обеспечивается за счет их выделения из отходящего потока и возврата в реактор. Концентрация спирта поддерживается в пределах 4,5—7,0%. Для получения 95%)-го спирта выходящий из аппарата продукт проходит несколько ступеней разделения. На первой жидкость отгоняется от твердых остатков. Затем жидкость фракционируется и получается 50— 70%)-й этанол. На следующей ступени разгонки концентрация его повышается до 90—95%. Более высокая концентрация спирта может быть достигнута только азеотропной перегонкой. Дистилляция спирта — самая энергоемкая и технологически сложная стадия всего процесса получения этанола ферментацией. [c.123]

    Амилены нормального строения получают каталитическим дегидрированием н-пентана [42]. Кипящий при 30,1° пентен-1 можно отделить простой ректификацией от пентена-2 (т. кип. 36,4°) и н-пентапа (т. кип. 36,1°), Это разделение является одной из стадий синтеза пиперилена из н-пентана (гл. 12, стр. 222). Нормальный пентан и пентен-2 можно, безусловно, отделить друг от друга с помощью описанных выше методов, например азеотропной перегонкой с аммиаком. [c.133]

    Простая перегонка. При простой перегонке пары кипящей яшдкости непосредственно из перегонной колбы поступают в холодильник, где превращаются в конденсат. Таким образом, разделение смеси жидкостей в основном может происходить лишь на стадии испарения. [c.29]

    Применительно к глубокой очистке вещества однократная перегонка может быть использована и в качестве предварительной стадии перед применением многоступенчатых процессов разделения. Для разделения смесей веществ с близкими температурами кипения однократная перегонка малоэффективна. В этих случаях эффект очистки может быть увеличен путем частичной дефлегмации (конденсации) поднимающегося из перегонного куба пара перед его поступлением в конденсатор и переходом в дистиллят. Это достигается с помощью специальных устройств — дефлегматоров. Образующаяся в результате частичной конденсации пара жидкость — флегма стекает обратно в перегонный куб. Получаемый же при этом дистиллят будет содержать уже меньше вышекипящей примеси, чем, например, в случае простой перегонки. [c.51]

    По существу, фракционная перегонка представляет собой последовательное испарение и конденсацию жидкой смеси, причем на каждой стадии этого процесса испаряемая смесь все более обогащается низкокипящим компонентом. Остающаяся жидкость обогащается компонентом с более высокой температурой кипения. Если поместить между перегонной колбой и приемником фракционную колонку, разделение становится более эффективным и отпадает необходимость заменять приемные сосуды. На рис. 2.4 изобра- [c.21]

    Нефть и особенно ее высококипящие фракции и остатки характеризуются невысокой термической стабильностью. Для большинства нефтей температура термической стабильности соответствует температурной границе деления примерно между дизельным топливом и мазутом по кривой ИТК, то есть =350 - 360 °С. Нагрев нефти до более высоких температур будет сопровождаться ее деструкцией и, следовательно, ухудшением качества отбираемых продуктов перегонки. В этой связи перегонку нефти и ее тяжелых фракций проводят с ограничением по температуре нагрева. В условиях такого ограничения для выделения дополнительных фракций нефти, выкипающих выше предельно допустимой температуры нагрева сырья, возможно использовать практически единственный способ повышения относительной летучести компонентов - перегонку под вакуумом. Так, перегонка мазута при остаточных давлениях в зоне питания вакуумной колонны =100 и =20 мм рт. ст. (=133 и 30 гПа) позволяет отобрать газойлевые (масляные) фракции с температурой конца кипения соответственно до 500 и 600 °С. Обычно для повышения четкости разделения при вакуумной (а также и атмосферной) перегонке применяют подачу водяного пара для отпаривания более легких фракций. Следовательно, с позиций термической нестабильности нефти технология ее глубокой перегонки (то есть с отбором фракций до гудрона) должна включать как минимум 2 стадии атмосферную перегонку до мазута с отбором топливных фракций и перегонку под вакуумом мазута с отбором газойлевых (масляных) фракций и в остатке гудрона. [c.200]

    В более старой литературе по перегонке. Некоторые описания этого способа фракционированного разделения настолько устарели, что лишь подчеркивают, насколько новым является развитие эффективных лабораторных ректификационных приборов. Перегонка через колонну по принципу действия схожа с очисткой жидкой смеси действием противотока другой соответственно выбранной жидкости (непрерывная экстракция растворителем). Весьма тесно связана с этим процессом очистка газообразных смесей действием противотока жидкого растворителя (обычный скрубберный процесс). Последние три процесса разделения обладают той особенностью, что многократно повторяемые стадии могут быть совмещены воедино с помощью противотока жидкости, стекающей под действием силы тяжести и восходящего пара. Таким образом удается полностью избежать трудоемкой работы по фракционированию с помощью простых стадий однократного разделения. С помощью одной насадочной колонны можно достичь того же результата разделения, что и при стократном повторении операции простой разгонки. [c.13]

    Обычно для отделения спиртов от углеводородов и тяжелых побочных продуктов требуются две стадии перегонки. Этот метод выделения индивидуальных продуктов усложняется при необходимости разделения изомеров (например, бутанола-1 и метилнропанола-1). Если в какой-либо стадии разделения продуктов применяется вода, дальнейшие осложнения вызываются растворимостью в ней низкомолекулярных продуктов. Во всяком случае следует учитывать, что некоторое количество воды образуется на ступени гидрирования вследствие дегидратации спиртов. При производстве высших спиртов (октилового и выше) для предотвращения термического разложения продуктов перегонку необходимо проводить под вакуумом. [c.275]

    Эта схема включает, кроме трех основных перечисленных выше операций, такие стадии разделения, как депарафинизацию всей смеси после отделения ее от асфальтенов, вакуумную перегонку ншдких продуктов депарафинизации и последующее разделение при помощи методов дробного осансдения и хроматографии фракций, полученных при вакуумной перегонке, В схеме предусмотрено также освобождение фракций ароматических углеводородов от сопутствующих им сернистых соединений окислением их гидроперекисью водорода. Наконец, в схеме имеется стадия дальпе11шего разделения асфальтенов методом дробного осаждения. [c.450]

    Основные принципы. В случае перегонки при очень низких давлениях имеют дело с процессом, успех которого зависит от разницы в скорости испарения из жидкой фазы в пространство, практически в пустоту, различных типов молекул, входящих в состав разделяемой смеси. Шиболее важными факторами, которые следует учитывать в этом процессе, являются следующие а) стойкость разделяемого вещества к температуре, воздействию которой оно будет подвергаться в перегонном аппарате в течение определенного времени б) поддержание необходимого высокого вакуума над жидкой фазой в) фактор разделения для подлежащих разделению видов молекул г) число необходимых стадий разделения, которое следует применить, чтобы достигнуть желаемой степени разделения. [c.100]

    Схема анализа керосино-газойлевых фракций нефти, разработанная в Институте нефти АН СССР69, в настоящее время усовершенствована путем включения в нее стадии разделения узких фракций на газовом хроматографе70. Ароматические фракции анализировали на 18-метровой колонке при температурах 175—250 °С (эффективность порядка 7—8 тыс. теоретических тарелок). Неподвижными жидкостями служили кубовые остатки, полученные при перегонке силиконовой жидкости ПФМС-4 (фракция выше 350 °С при 1 мм рт. ст.) и кабельного масла (фракция выше 300 °С при 10 4 мм рт. ст.). Для идентификации кроме хроматографических данных использовали также результаты спектрального анализа фракций элюата, конденсируемых в ловушках. В результате исследований было идентифицировано большое число моноциклических и бициклических углеводородов с температурами кипения до 300 °С. [c.227]

    На первой стадии разделения продуктов разложения содовым раствором и водой удаляют кислоту. Свободная от кислоты смесь содержит ацетон, фенол, кумол и побочные продукты (а-метил-стирол, ацетофенон, фенилдиметилкарбинол, а-кумилфенол). Затем вакуумной перегонкой разделяют следующие фракции  [c.25]

    Важным и технически интересным источником получения бензола и его гомологов, кроме указанных выше фракций, полученных риформингом, являются жидкие продукты пиролиза, образующиеся при кратковременном крекинге нефти с целью получения этилена [121]. На каждые 1000 кг этилена приходится 600—900 кг жидких продуктов, содержащих 60—70% извлекаемых ароматических углеводородов. Состав жидких продуктов в сильной степени зависит от условий работы установки по производству этилена. В среднем содержание бензола находится в пределах от 20 до 40%, толуола от 15 до 20% и ксилолов от 10 до 15%. Выделение ароматических углеводородов происходит в несколько стадий. Сначала присут-ствую1дие в жидких продуктах диены гидрируются до соответствующих олефинов. Затем очищенный продукт подвергается перегонке с разделением на первую, основную фракции и остаток. Основная фракция, кипящая в интервале от 50 до 150 °С подвергается обработке водородом при этом олефины гидрируются до алканов и удаляются серусодержащие соединения. Ароматические углеводороды затем разделяются экстрактивной перегонкой или экстракцией жидкость — жидкость. В обоих случаях в качестве растворителя используется iV-метилпирролидон. [c.1736]

    С помощью однократной простой перегонки, как правило, не удается чисто разделить на компоненты смесь двух или нескольких жидкостей с разницей в температурах кипения менее 80 С. При нагревании таких смесей вместе с легколетучей жидкостью испа- ряется также некоторое количество компонента с более высокой температурой кипения. В отличие от, простой перегонки, при которой разделение составляющих смесь продуктов происходит только на стадии испарения, фракционная перегонка предусматривает частичную конденсацию образующихся паров я возвращение их обратно в перегонный сосуд. Конденсации и возврату в перегонную колбу подвергаются в первую очередь пары высококипящего компонента, 2 очищенные пары летучего продукта далее полностью конденсируются в холодильнике и собираются [c.141]

    Согласно первому методу, перегонка этой неочищенной смеси проводится в атмосфере азота с отбором фракции с температурой кипения 204-206 °С. Получающийся продукт содержит три основные примеси уксусную кислоту, метиламин и неидентифицированное вещество X, очевидно какой-то амин. Это вещество удаляется неоднократной экстракцией с петролейным эфиром. Для разделения фаз в процессе экстракции необходимо добавлять воду однако эта вода вместе с избытком петролейного эфира может быть удалена перегонкой при условии, что температура будет ниже 130 °С. Затем в полученный продукт добавляется концентрированная серная кислота (10 мл/л) и перегоняется при давлении 3-5 мм (т. к. 80°С). Метиламин остается в колбе в виде сульфата, а вода и петролейный эфир разделяются еще в начале перегонки. В присутствии большого количества воды эту стадию нужно повторить, так как гидролиз N-метилацетамида катализируется кислотами. [c.20]

    По мере перехода от газообразных к жидким, а затем и к твердым горючим ископаемым происходят непрерывный рост молекулярной массы их органических соединений, усложнение их строения и упрощение состава. Так, если в горючих газах основная часть представлена простыми индивидуальными углеводородами, в нефти они вводят лишь в продукты прямой перегонки, а тяжелые остатки нефти и ТГИ торфяной стадии зрелости — смесь уже весьма сложных углеводородных гетероциклических соединений, то бурые и каменные угли — смесь сложных высокомолекулярных гетерополиконденсатных соединений, практически не поддающаяся физико-химическому разделению на отдельные классы. Вместе с тем в последних имеются фрагменты, аналогичные алифатическим, нафтеновым, парафиновым и гетероциклическим структурам. Соединения с относительно небольшой молекулярной массой могут быть уподоблены некоторым полимерным материалам. Это все дает возможность изучать общую картину термической деструкции веществ ТГИ на более простых соединениях природных газов и нефтей, хорошо изученных методами органической химии и физико-химического анализа. [c.126]

    ТФА-группу в химии пептидов стали использовать после появления работы Вейганда и Сендеса [103]. Относительно высокое давление паров ТФА-производных способствует их разделению и очистке путем возгонки в высоком вакууме [108] и дробной перегонки [109] в некоторых случаях это явление было детально исследовано [113]. Применение этих производных для ГХ аминокислот и пептидов казалось вполне оправданным. Байер и Дести [4] по предложению Вейганда [99] первыми исследовали разделение метиловых эфиров N-ТФА-аминокислот. В последующей работе наряду с варьированием хроматографических условий использовали различные эфирные группировки (см. табл. 14). Последовательность стадий образования производных в большинстве случаев одинакова аминокислоты сначала соответствующим методом этерифицируют, а затем трифторацетилируют. [c.316]

    Условность ЭТОЙ классификации заключается в том, что методы разделения с изменением афегатного состояния в процессе реализации проходят стадию образования дисперсной фазы (пузырьков пара в жидкости при перегонке и абсорбции, кри- [c.192]

    Часто растворимая в воде смесь при перегонке дает легкоки-пящий растворитель и остаток, не растворяющийся в воде. При разделении таких смесей вначале полностью удаляют летучий растворитель, а остаток далее рассматривают как смесь, нерастворимую в воде. Если остаток после перегонки представляет собой растворимую в воде жидкость, то лучше не стараться на этой стадии удалять растворитель, так как разделение редко бывает количественным. Если, однако, остаток после перегонки представляет собой растворимое в воде твердое вещество и растворитель, по-видимому, отделяется полностью, в этом случае желательно полностью отделить растворитель и далее исследовать отдельно дистиллат и остаток в перегонной колбе. [c.413]

    На стадии разгонки и получения чистого продукта очень важным является фактор разделения на отдельные фракции. Чтобы максимально исключить термическое разложение продукта, выбрано оптимальное соотношение температ) ры перегонки, давления в системе и скорости фракционирования [4]. Результатом отработки технологии препаратов Краснодар- и фуролан стала организация малотонна кного производства этих регуляторов роста растений в экспериментальном цехе проблемной лаборатории КубГТУ. [c.18]

    Наконец, контактная ректификация не может быть рекомендована для широкого применения в пределах между 1 мм и давлением в условиях молекулярной перегонки. Вместо этого следует отдать предпочтение многократной повторной перегонке для того, чтобы достичь обогащения (см. гл. I, раздел I). При такого рода процессах повторяют несколько раз простую перегонку каждая дает разделение, близкое к тому, которое вызывается одной теоретической тарелкой много стадий повторяется друг за другом с соответствующим смешением промежуточных фракций, как в случае дробной перекристаллизации [55]. Этот принцип разделения напоминает то, что происходит при противоточной экстракции жидкости жидкостью [56]. Механизм, при помощи которого простая перегонка позволяет достигнуть разделения, несколько отличается от механизма обогащения при помощи контактной ректификации. При простой перегонке разделение достигается при помощи регулируемого изменения количества фазы. Когда жидкость испаряется, состав пара определяется равновесными условиями или абсолютной скоростью испарения, но не зависит от самопроизвольного приближения к условиям равновесия. При давлении в несколько миллиметров ртутного столба самопроизвольная контактная ректификация часто становится столь медленной, что фактически действует лиЦ1ьна механизм количественного изменения фазы, который называют термической ректификацией [57] для того, чтобы отличить ее от контактной ректификации, осуществляемой в обычных колонках. [c.395]

    В первой стадии процесса из экстракта с помощью водоструйного насоса удаляется эфир, причем остаются экстрагированные из апельсинных корок вещества, которые подлежат разделению на фракции. Так как экстракт содержит относительно более летучие терпены, то его обрабатывают сначала В видоизмененном приборе с кипящей жидкостью [37], который полезен для перегонки веществ, слишком летучих, чтоб их можно было перегонять в высоковакуум-ных приборах со стекающей пленкой, и слишком термически мало стабильных для перегонки обычными методами. Ряд моделей этих перегонных приборов показан на рис. 3 и в гл. V (рис. 13). Типичный прибор (рис. 3) состоит из кипятильника/, несущего колонку 2, которая оканчивается шарообразным расширением [c.431]


Смотреть страницы где упоминается термин Перегонка стадии разделения: [c.251]    [c.499]    [c.344]    [c.499]    [c.51]    [c.166]    [c.450]    [c.256]    [c.242]    [c.347]    [c.23]   
Углеводороды нефти (1957) -- [ c.29 , c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте