Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкий воздух свойства металлов, изменение при

    Если сплавленную серу нагревать до 160° — 220°, то она теряет уже подвижность и становится густою и весьма темною, так что тигель, в котором она нагревается, может быть опрокинут и сера не выливается. Выше нагретая сера опять становится более жидкою, при 250°—300° опять очень подвижна, хотя и не приобретает первоначального цвета, а при 448° она кипит. Эти изменения в свойствах серы зависят не только от изменения температуры, но и от изменения в строении. Если серу, нагретую около 350°, вылить тонкою струею в холодную воду, то она не застывает в твердую массу, но, сохраняя бурый цвет, остается мягкою, тянется в нити и обладает упругостью подобно каучуку. Но и в этом мягком и тягучем состоянии сера не остается долгое время. Спустя некоторое время мягкая и прозрачная сера твердеет, становится мутною и переходит в обыкновенное желтое видоизменение серы, причем выделяется тепло, как и при превращении призматической серы в октаэдрическую. Мягкая сера характеризуется тем, что некоторая часть ее нерастворима в сернистом углероде. Если такую мягкую серу облить этой жидкостью, то в раствор переходит только часть обыкновенной серы, но некоторая часть серы остается нерастворенною, и такая сера сохраняет свои свойства долгое время. Наибольшая пропорция нерастворимой серы получается при нагревании немного выше 170°, особенно в присутствии и при пропускании воздуха, или 50 , или НС1. Она понижает температуру плавления серы. Точно такая же нерастворимая (аморфная) сера получается при некоторых реакциях, происходящих водным путем, когда сера выделяется из растворов-. Так, напр., серноватистонатровая соль Na S O при действии кислот выделяет серу, нерастворимую в сернистом углероде. Вода, действуя на хлористую серу, также дает подобное видоизменение серы. Некоторые сернистые металлы при действии азотной кислоты выделяют серу в тйком же видоизменении. [c.197]


    Детали машин, оборудование и сооружения, выполненные из стали, работают в различных средах — влажном воздухе, воде и водных растворах, смазочных маслах, жидких металлах, радиоактивных средах и др. Все среды могут иметь высокие или низкие температуры и давления, а также находиться в движении, что существенно при их воздействии на металл. Они могут влиять на механические свойства стали, особенно при продолжительной нагрузке, так как воздействие среды на металл обычно проявляется в течение продолжительного времени. Рабочие среды особенно сильно влияют на металл в процессе его деформации, но и до деформации некоторые среды при соприкосновении с металлом способны вызывать изменение его прочности, износоустойчивости и пластичности. [c.101]

    Детали машин, аппаратов и сооружений, изготовленные из стали, работают в различных внешних средах, таких как влажный воздух, вода и водные растворы, смазочные масла, жидкие металлы, радиоактивные среды и другие, причем все эти среды могут иметь высокие или низкие температуры й давления, а также находиться в движении, что имеет немаловажное значение при воздействии среды на металл. Эти среды могут влиять на механические свойства стали, особенно при длительном нагружении, так как для воздействия среды на металл обычно необходимо значительное время. Особенно сильно проявляется влияние рабочих сред на металл в процессе его деформации, но и до деформации некоторые среды при соприкосновении с металлом могут вызвать изменения его прочности, выносливости и пластичности. [c.13]

    К гибридным топливам относятся системы, использующие жидкий окислитель и твердое гранулированное горючее. Простые горючие, такие как полиэтилен, инертны, но могут гореть на воздухе. При сравнительно больших размерах гранул они способны долго находиться в воде, не претерпевая существенных изменений. Композиты, содержащие свободный металл (например, алюминий или магний) или бор, представляют несколько большую опасность на воздухе и ие горят в воде. В морской воде металлические добавки корродируют, поэтому возможный срок экспозиции в таких условиях не превышает 5 лет. Гранулированное горючее, содержащее гидриды металлов, например UH, AIH3 или ВеНг, быстро горит на воздухе и интенсивно реагирует с водой с образованием водорода. Допустимый срок пребывания в воде даже в случае массивных гранул очень мал, вероятно, менее 1 нед. В качестве жидких окислителей в гибридных системах используются такие же компоненты, как и в бинарных жидких топливах. Свойства таких окислителей представлены в табл. 164. [c.498]


    Измерение глубины коррозионных язв с помощью иглы, укрепленной на индикаторной головке. 3) Микроскопич. исследование металла (выявление межкристаллитной коррозии, селективного окисления, определение размеров питтинга и др.). 4) Определение потери веса па единицу поверхпости (при удалении продуктов коррозии с поверхности). 5) Измерение увеличения веса на единицу поверхности (при сохранении всех образовавшихся продуктов коррозии используется гл. обр. при изучении газовой корро,эии). 6) Количественное определение содержания продуктов коррозии в жидкой среде (при полной их растворимости). 7) Определение изменений механич. свойств металла в результате коррозии (уменьшение предела прочности на разрыв, числа возможных перегибов образца до разрушения и др.). 8) Измерение количества выделяющегося водорода при коррозии с водородной деполяризацией. 9) Измерение количества кислорода, расходуемого при коррозии с кислородной деполяризацией, при окислении в воздухе или в кислороде. ) U) Измерение увеличения электрич. сопротивления образца (в результате уменьшепия сечения металла при коррозии), il) Определение времени до разруше-1ШН образца (при испытаниях па коррозионное растрескивание). 12) Определение числа циклов изменения напряжений до раз1)ушеник образца (при испытаниях на коррозионную усталость). [c.361]

    Основной целью химии становится поиск лекарственных средств. Изменение точки зрения было в общем благотворным, а следствием отказа от сохранения секрета и расширения экспериментальных работ явилось накопление фактического материала. Основными представителями нового течения были Либавий, открывший тетрахлорид олова, Базиль Валентин, описавший соединения сурьмы, и Ван Гельмонт (1577—1644). Последний внес большой вклад в познание природы веществ, сделав различия между воздухом, парами и газами. У Ван Гельмонта мы находим следующие идеи металл при растворении в кислоте, хотя и переходит в жидкое состояние, не теряет полностью своих свойств, так же как соль не исчезает при растворении в воде. Произведения ятрохимиков оставались туманными и непонятными, как и у алхимиков. [c.14]


Смотреть страницы где упоминается термин Жидкий воздух свойства металлов, изменение при: [c.361]    [c.115]    [c.166]    [c.286]   
Лекционные опыты по общей химии (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Воздух жидкий

Изменение свойств

Металлы воздуха

Металлы свойства



© 2024 chem21.info Реклама на сайте