Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективное окисление

    Другие авторы использовали раствор предварительно выделенного четвертичного аммониевого перйодата в хлороформе, ТГФ или диоксане для расщепления гликолей [1385], селективного окисления сульфидов до сульфоксидов [1402] и для окислительного декарбоксилирования [1381, 1402] следующих типов соединений (кипячение в течение 2—24 ч)  [c.405]

    V.l.Б. Селективное окисление алканов [c.148]


    Установленные кинетические закономерности селективного окисления элементов коксовых отложений в последовательности Н-С-5 (рис. 3 1) на катализаторах, содержащих оксиды металлов переменной валентности, подтверждаются экспериментальными данными по количеству и составу кок- [c.89]

    Установлено, что глубина удаления углерода в регенераторе не зависит от вида перерабатываемого сырья. Для регенерированного железоокисного катализатора характерно практически постоянное значение содержания углерода — 0.023-0.045%, не зависящее ни от вида сырья, ни от температуры проведения процесса. Для серы, напротив, наблюдается з величение ее содержания в коксовых отложениях с ростом сернистости сырья, температуры процесса и времени работы катализатора. Это обусловлено тем, что при температурах проведения процесса (475-540°С) идет селективное окисление водорода и углерода в составе коксовых отложений, а при температурах регенерации начинается частичное окисление серы, весьма незначительное, не превышающее 12%, в то время как углерод удаляется на 88-97%. Селективное удаление углерода в регенераторе подтверждается также тем, что независимо от вида сырья отношение 5/С для регенерированного катализатора выше, чем для закоксованного. [c.95]

    В следующем параграфе рассматривается применение хлора в виде гипохлорита для очистки от активной серы. В ходе разработки этого процесса больших трудов стоило найти способы предотвращения прямого хлорирования. Так как качества большинства нефтепродуктов при длительном хранении ухудшаются в результате окисления, то были предприняты попытки очищать нефтепродукты от нестабильных компонентов путем селективного их окисления. Для этой цели были испробованы кислород, озон и даже азотная кислота, но должной селективности окисления не удалось добиться. Реакция формальдегида и серной кислоты с ненасыщенными циклическими углеводородами [75—80, 98], когда-то считалась перспективной, но и она не получила промышленного применения. [c.238]

    На свойства катализатора значительное влияние может оказать его пористая структура. Оптимальная структура пор зависит, например, от экзотермичности реакции и размеров молекул реагентов. Пористая структура может изменить как активность, так н селективность. Из-за неправильного выбора пористой структуры катализатора в некоторых реакциях селективного окисления можно потерять до 10% селективности вследствие протекания нежелательных гомогенных газофазных реакций в больших норах. [c.28]

    Как было показано выше, при гетерогенном катализе селективное окисление алканов не приводит ни к каким другим продуктам, кроме окислов углерода. Многочисленные попытки реализовать окислитель- [c.148]


    Были получены некоторые данные, говорящие о частично гомогенном характере сгорания акролеина (реакция 3), по крайней мере при температурах выше 400° С [64]. В очень длинном списке смешанных окисных катализаторов селективного окисления пропилена в акролеин наиболее часто встречаются катализаторы, содержащие окисел переходного металла (Мо, Ш, V) вместе с одним или двумя окислами элементов групп V Б и VI Б (Р, Аз, 5Ь, В1, 5е, Те). Исключительно активен катализатор В1—Мо—О и сам по себе [65], и с добавкой Р, т. е. В1—Мо—Р—О с соотношением В1 Мо Р = 9 1 12. [c.156]

    У.З.А, Селективное окисление ядра [c.173]

    Окисление этилена кислородом является новым и наиболее перспективным процессом синтеза оксида этилена. Несмотря на применение более дорогостоящего кислорода, преимущества этого метода состоят в повышении селективности окисления до 70—75%, снижении потерь этилена с отходящим газом, разбавленным азотом воздуха, уменьшении габаритов аппаратуры. [c.436]

    Установив тип материалов, устойчивых в условиях реакции, следует решить, какой именно материал каталитически активен в данной реакции. Сначала обычно изучают имеющийся опыт проведения аналогичных реакций. Например, молибдаты и ва-надаты, как правило, являются хорошими катализаторами селективного окисления, а палладий — разнообразных реакций гидрирования. [c.9]

    При выборе подходящего катализатора необходимо учитывать нежелательные побочные реакции, которые он может ускорять. Важно изучить химические свойства продукта, чтобы установить, будет ли оп устойчив в условиях реакции при наличии данного катализатора. Иногда на катализатор сильнее воздействуют именно те вещества, которые он не превращает. Например, хороший катализатор селективного окисления дает высокий выход целевого продукта при незначительном образовании диоксида углерода и воды дая е в присутствии очень большого избытка кислорода. [c.10]

    Кроме нанесенных металлов существует еще много других многофазных катализаторов. Например, катализаторы селективного окисления часто содержат 10 или большее число элементов, образующих несколько фаз часть из этих фаз кристаллическая [4]. Роль различных фаз в таких катализаторах, обычно найденных эмпирически, объяснить нелегко. Типичная ошибка состоит в предположении, что все ингредиенты катализатора непосредственно участвуют в каталитическом акте. Обычно это не верно. Как правило, некоторые компоненты вводят для облегчения синтеза катализатора, формирования нужной микроструктуры, увеличения прочности катализатора и продолжительности его работы. [c.16]

    Низкотемпературный катализатор конверсии окиси углерода НТК-4 (индекс 13—U11, ТУ 6-03-236—69). Может быть использован также для очистки газов от сернистых соединений, для селективного окисления СО. [c.402]

    Как видно из графика, РС коксов существенно зависит от температуры их предварительной прокалки. На графике выделена заштрихованная зона, соответствующая оптимальному значению реакционной способности, в пределах которой РС кокса наполнителя и РС кокса, полученного при коксовании связующего, максимально сближается. При этом наблюдается минимальная селективность окисления анода (химического и электрохимического), т.е. равномерное окисление всей массы анода без осыпания частиц кокса-наполнителя. [c.36]

    Окисление гидроперекисями. Изучалось окисление сульфидных концентратов гидроперекисью третичного амила и гидроперекисью изопропилбензола. В присутствии катализаторов — хлористого молибдена, комплексов сульфоксидов с солями металлов переменной валентности, окисление сульфидных концентратов до сульфоксидов при 70—80"С протекало с высокими выходами и относительно спокойно. Селективность окисления высока, до 98—99%. Основная трудность, по нашему мнению, заключается в отгонке продуктов разложения гидроперекисей, где необходим глубокий вакуум (1—2 мм рт. ст.) для получения НСО, пригодных в качестве экстрагентов металлов. При температурах выше 100° сульфоксиды подвергаются термическому разложению, и поэтому отгонка в этих условиях продуктов разложения гидроперекисей ведет к значительному осмолению НСО. По этой же причине перегонка (ректификация) НСО при 100°С не имеет смысла. Следует отметить также и то, что органические гидроперекиси пока сравнительно дороги и малодоступны для промышленного синтеза. [c.31]

    Из I фракции сульфидного концентрата были получены НСО при окислении кислородом воздуха в присутствии уксусного ангидрида с выходом до 60—70%. Для более высокомолекулярных фракций сульфидного концентрата выход НСО был низок. Селективность окисления была также низка ,40%, и в продуктах реакции было много сульфокислот (до 35%). Эти опыты убедили нас также в том, что отделение уксусной кислоты, которая образовывалась при окислении, является нежелательной операцией, приводящей к увеличению вязкости сульфоксидов. [c.32]

    Наиболее типичную селективность металлы проявляют в отношении окислительно-восстановительных реакций, но они могут также ускорять реакции аминирования, декарбонилирования, полимеризации, циклизации и молекулярные перегруппировки (см. стр. 19). В этих реакциях поведение некоторых металлов весьма специфично, например, в реакциях частичного насыщения тройных связей или одного типа ненасыщенной связи в присутствии других и в аналогичных реакциях селективного окисления. Хотя в идеале предпочитают иметь высокую селективность в сочетании с высокой активностью, на практике обычно увеличение селективности может быть достигнуто уменьшением активности данного металла или выбором менее активного металла. Например, при селективном гидрировании ацетилена до этилена селективность может быть увеличена снижением активности никеля путем его частичной дезактивации, [c.23]


    Оптимальный режим процесса на этой стадии должен обеспечить селективность окисления аммиака, минимальные поте- [c.218]

    СНзО- СНзОН - НСНО - НСООН - СОг Вследствие этого селективность окисления ИПБ до ГП не превышает 95%. С увеличением температуры и степени конверсии в реакционной массе накапливается ГП и усиливаются побочные реакции его разложения. Во избежание этого степень конверсии ИПБ не должна превышать 0,3 дол. единиц. Для нейтрализации муравьиной кислоты, образующейся в качестве побочного продукта, окисление проводят в водно-щелочной эмульсии (раствор карбоната натрия), что позволяет интенсифицировать основную реакцию образования ГП (а). Поэтому оптимальными условиями окисления ИПБ до ГП являются температура 120—130 С, давление 0,5—1 МПа, pH среды 8,5—10,5. В этих условиях содержание ГП в реакционной смеси составляет 25% масс. Процесс окисления ИПБ ингибируется такими веществами как фенолы, алкены и сернистые соединения. Поэтому исходный ИПБ подвергается тщательной очистке от примесей. [c.358]

    Метод хроматографии с предварительным окислением включает следующие основные стадии 1) селективное окисление сульфидов нефтяного дистиллята 2) хроматографическое выделение сульфоксидов из смеси с углеводородами 3) восстановление сульфоксидов в исходные сульфиды. [c.113]

    Другой способ удаления малых количеств ацетилена из газов заключается в его селективном окислении до углекислоты и воды [11]. В качестве катализаторов наиболее пригодными оказались окись меди на каолине и металлическая медь. Для окисления 1% ацетилена берут самое меньшее 25%-ный избыток кислорода для полного окисления ацетилена требуется 100%-ный избыток кислорода. Процесс ведут при 350° с объемной скоростью 1200. При этих условиях выходяш ий из печи газ не содержит кислорода, так как его избыток полностью расходуется па окисление этилена. [c.157]

    Как уже упоминалось, на свойства катализатора значительно в.лияет его пористая структура. Оптимальная структура пор зависит, например, от экзотермпчпости реакции и размеров молекул реагентов. Пористая структура может изменить как активность, так и селективность. Из-за неправильного выбора пористой структуры катализатора в некоторых реакциях селективного окисления можно потерять до 10% селективности вследствие протекания нежелательных гомогенных газофазных реакций в больших норах. Кроме упомянутых способов регулирования пористой структуры, используют прокаливание при высоких температурах для закрытия пор п обработку паром для увеличения их диаметра. Добавляя к катализатору перед его прокаливанием различные количества связующего, можно варьировать размеры пор, которые образуются в результате удаления связующего прп прокаливании. [c.124]

    Общая картина окисления ароматических углеводородов очень близка к тому, что было описано для олефинов атака боковой цепи в бензильном положении с образованием альдегида или кислоты происходит быстрее и легче, чем атака ядра, при которой образуются хиноидные соединения и продукты их разложения. Селективному окислению благоприятствуют те же слабые катализаторы (УгОа, М0О3, ШОз), в то время как сильные катализаторы (N10, МпОг) и металлы (Р1, N1, Аи) приводят к полному разложению до СО2 и СО. Каталитическое сгорание ароматических углеводородов, по-видимому, протекает легче, чем сгорание алканов, но медленнее, чем сгорание олефинов [5]. [c.173]

    В противоположность олефинам продукты окисления ароматических ядер, по-видимому, образуются путем присоединения к сопряженной системе, а не путем замещения. При 1,4-присоединении к бензольному ядру образуется хиноидная система, которую всегда находят среди первичных продуктов, и вполне возможно, что хорошие выходы малеинового ангидрида из бутадиена имеют такое же происхождение [16]. Иоффе и Волькенштейн [162] указывают, что окисление бензола на окислах-полупроводниках р-тнпа (как, например, СиО) приводит к полному сгоранию (СО, Oj), но с одновременным образованием следов фенола и дифенила, которые не были найдены при селективном окислении на окислах-полупроводниках п-типа (как, например, V2O5) в этом случае главными продуктами являются хинон и малеиновый ангидрид. Теоретические соображения заставляют думать, что в первом случае при диссоциативной адсорбции gHg образуются фенильные радикалы gHe, а во втором случае ассоциативная адсорбция приводит к образованию хиноидных бирадикалов  [c.177]

    Актианость катализаторов исследовали г ри температурах 170...270°С, объемной скорости подачи сырья 3000 ч концентрации сероводорода 2-4%, отноаюнии 0, Н25=1. Результаты исследований приведены в табл. 4.1. Как видно, наиболее активны катализаторы, содержащие оксиды железа (К-24, СТК), никеля и угля. К высокоактивным относятся и катализаторы на основе оксидов цинка (Д-49, ГИАП-10-2) и меди (НТК-10). Катализаторы активной группы различаются селективностью окисления сероводорода до серы от нуля для никельхромового до [c.100]

    Бивон - Свлвктокс (БСР/селвктокс) [40]. Первая ступень процесса аналогична всем восстановительным схемам и включает смешения газов, поступающих на очистку, с продуктами неполного сгорания топливного газа, восстановление и гидролиз сернистых соединений до Н25 в каталитическом реакторе при температуре 300°С. Газовая смесь подвергается двухступенчатому охлаждению и подается на вторую стадию - каталитическое окисление сероводорода в серу. Селективное окисление ведется на катализаторе селектокс при температуре 177...377°С без образования [c.174]

    Суперклаус-99,5 - вариант процесса, применяемый в тех случаях, когда требуется отбор более 99,5% серы, содержащейся в отходящем газе. Для достижения такой глубины отбора в схему процесса Суперклаус-99 добавлена ступень гидрирования. Схема процесса Суперклаус-99,5 состоит из термической ступени, двух реакторов Клауса, реактора гидрирования и реактора селективного окисления сероводорода (рис. 4.45) [42]. [c.179]

    Так, полного и четкого выделения сернистых соединений из нефтяных фракций экстракционными или хроматографическими методами практически невозможно достигнуть из-за малой полярности этих компонентов, близкой к полярности ароматических углеводородов. Г. Д. Гальнерн с сотр. предложил окислять нефтяные сульфиды, трудно отделяемые от других компонентов, в суль-фоксиды перекисью водорода [169, 170]. При обработке светлых нефтяных дистиллятов эта реакция протекает в мягких условиях, и высокоселективно [171], и гетерогенным эмульсионным окислением удается получить сульфоксиды, полностью свободные от примесей тиофеновых производных [172]. Селективность окисления фракций, кипящих выше 350—360°С, значительно хуже даже при более жестких условиях (при гомогенном окислении 37%-ной Н2О2 в уксусном ангидриде). Например, среди продуктов окисления фракции С21—С24 ромашкинской нефти обнаружено около 30% производных тиофена и бензотиофена [173]. [c.22]

    При изучении фрагментного состава керогенов в последние годы нашла применение и окислительная деструкция [398—402], особенно метод ступенчатого окисления оргадической массы малыми порциями разбавленного щелочного раствора КМПО4. В деструктивных исследованиях смолисто-асфальтовых компонентов нефти эти методы практически пока не использовались. Селективное окисление хромовой смесью применено для расщепления нефтяных порфиринов или их металлокомплексов до малеинимидов  [c.45]

    Как видно из рис. 113 (стр. 389), при последовательном развитии реакций окисления циклоалканов выход дикарбоновых кислот все более возрастает, и, казалось бы, этим путем кислоты можно получать прямым одностадийным окислением циклоалканов. В дейст зительности из-за образования многих побочных продуктов и за счет сгорания в СО2 селективность окисления по целевой ди-карбонсвой кислоте не превышает 40—50%. По этой причине в [c.391]

    Известно [14], что скорость образования окиси этилена нелинейно зависит от степени покрытия поверхности кислородом и имеет резкий максимум при степени покрытия 0,5—0,6. Такой характер скорости обусловлен, по-видимому, структурным превра-щеппем поверхности металла и связанным с этим изменением типа связи металла с кислородом. Это происходит в результате взаимодействия кислорода как с поверхностью катализатора, так и с его приповерхностными слоями. Кислород, внедряясь в приповерхностные слои серебра, оказывает, очевидно, модифицирующее действие, подобное модифицирующему действию других электроотрицательных элементов [15]. Аналогия между глубоко адсорбированным кислородом и электроотрицательными промоторами и характер изменения активности и избирательности катализатора прп введении промоторов позволяют предположить, что эффект повышения селективности окисления этилена в нестационарном циклическом режиме обусловлен понижением энергий активации стадий, определяющих скорость окисления этилена по маршрутам полного и парциального окисления, причем более сильным понижением по последнему. Нестационарные условия позволяют, очевидно, провести процесс при более высоких концентрациях реакционного кислорода, благодаря чему и достигается более высокая избирательность. Пока нельзя исключить, что экстремум избирательности при величине периода 30 с связан с динамическими свойствами реактора и не обусловлен динамическим свойством поверхности катализатора. [c.35]

    ВНИИНЕФТЕХИМом впервые было показано, что применение каталитических количеств нафтената натрия (и других металлов постоянной валентности) обеспечивает возможность повышения скорости и селективности реакции окисления этилбензола кислородом воздуха. Этот факт учтен при разработке (ВНИИОЛЕФИН) процесса получения стирола и окиси пропилена (рис. 6.15). Реакция осуществляется при 140—155 °С в каскаде барботажных реакторов. Для приготовления катализатора применяется в микроколичествах едкий натр. Щелочь, вступая во взаимодействие с гидроперекисью этилбензола, образует соль гидроперекиси, хорошо растворимую в оксидате и являющуюся истинным катализатором процесса. В указанных условиях селективность окисления равна 85—88% при глубине окисления 10—12%. [c.195]

    При использовании в качестве катализаторов соединений У(1У), Сг(1И), Мо(У1) селективность окисления циклогексана в циклогексанон значительно повышается по сравнению с использованием промышленного катализатора (Со31 2). Эти катализаторы не взаимодействуют с перекисными радикалами, а высокий выход кетона обусловлен селективным разложением гидроперекиси цнклогексила в основном молекул51рны м путем в циклогексанон (выход до 94%). [c.281]

    Приведенный ряд активности существенно отличается от подобного ряда, приведенного Алхазовым и Амиргулян [10], которые изучали Каталитические свойства оксидов металлов FV периода с целью выбора оптимального катализатора парциального окисления сероводорода. По их данным, каталитическая активность индивидуальных оксидов в реакции прямого селективного окисления сероводорода до элементарной серы при температурах 50-575 К убьшает в следующем ряду 0,0>V,0>Fe,0>Mn,0> u0>Ti0>Zn0>Ni0> rO,. [c.65]

    Оловомолибденовый катализатор проявляет высокую активность в реакциях селективного окисления олефинов и спиртов, а также окисления в элементарную серу. Причем он имеет ряд преимуществ перед традиционными катализаторами реакции Клауса и Т О ), так как в процессе [c.67]

    Реакции окисления—типичные высокоэкзотермические реакции — могут привести к выходу либо очень стабильных продуктов (например, превращение аммиака в азот и воду), либо промежуточных продуктов — селективное окисление (например, превращение аммиака в окислы азота, метана в формальдегид и пропилена в акролеин). [c.14]

    Состав исходного сырья в настоящее время различен. Окисляют как чистый нефтехимический нафталин, так и смеси нафталина с метилнафталинами и другими примесями, получаемые на коксохимических предприятиях. Хотя выход фталевого ангидрида при окислении метилнафталинов не превышает 40%, но в смеси с нафталином повышается селективность окисления в целевой продукт обоих компонентов сырья [128, с. 45—49]. Содержание до 10—15% метилнафталинов несколько повышает выход целевого продукта, производительность катализатора возрастает на 10—13% и снижается образование нафтохинона. Это объясняется тем, что сорбирующийся на катализаторе нафталин тормозит деструктивное окисление метилнафталинов, а метилнафталины в определенной мере тормозят образование нафтохинона, повышая тем самым селективность окисления нафталина [127]. [c.96]

    Основными примесями, содержащимися в технических сортах нафталина, могут быть метилнафталины и тионафтен. При газофазном окислении метилнафталинов образуется преимущественно фталевый ангидрид с примесью малеинового ангидрида, т. е. те же продукты, что и при окислении нафталина. Окисление тионафтена дает малеиновый ангидрид и оксиды серы. Примеси тионафтена в нафталине (до 1,5%) [23, с. 38] повышают стабильность катализатора ВКСС и увеличивают селективность окисления нафталина. Для получения фталевого ангидрида можно применять нафталин так называемых технических сортов. В табл. 19 приведены основные требования к качеству нафталина очищенного и технического . [c.128]

    Селективным окислением циклододекана в присутствии мета-борной кислоты или ее ангидрида в промышленности получают циклодо дека НОЛ и циклогексанол [32, 33]. Недостатком борной кислоты является необходимость использования сложного процесса для регенерации сухой кислоты. Поэтому предпочтительнее использование ее эфиров, растворимых в углеводородах. Окисление циклододекана осуществляют чистым кислородом или воздухом в течение 1 ч при 168 °С в присутствии борной кислоты, эфиров ме-таборной кислоты. В присутствии 12 % добавок возможно превращение 70—95 % циклододекана в циклододеканол и циклододе-канон. [c.329]

    В тех случаях, когда примеси метана нежелательны (как, например, при синтезе аммиака ), а иногда и просто недопустимы (в металлургических процессах), проводят селективное окисление окиси углерода до СО и поглощают СО из газа едким натром 11,5)/. Поскольку одновременно с этим окисляется и некоторое количество водорода, образующийся газ подвергают осущке. Описанный метод применяют для очистки газов, содержащих не более 1% СО. В качестве катализатора используется платина на носителе (0,1-0,5% Pt ). Условия процесса температура 50-150°С, среднечасовая скорость подачи газа 5000-10 ООО ч" при 50-150%-ном избытке кислорода. Необходимость применения избытка кислорода обусловлена одновременно протекающим процессом окисления некоторого количества водорода, связанного с недостаточной селективностью катализатора по отношению к СО. Образующийся газ содержит менее 1- 10" % СО и О . [c.181]

    Присутствие в сырье тионафтена приводит к образованию при сгорании диоксида серы. Присутствие во фталовоздушной смеси этого оксида подавляет разложение сульфата калия и стабилизирует работу катализатора. Примеси метилнафталинов также не мешают работе катализатора. Более того, в присутствии метилнафталинов даже несколько повышается выход фталевого ангидрида, увеличивается производительность катализатора на 10-13% и снижается образование нафтохино-на. Это объясняется тем, что сорбирующийся на активных центрах катализатора нафталин препятствует деструктивному (до СО и СО2) окислению метилнафталинов, а метилнафталины, в свою очередь, тормозят образование нафтохинона, повышая тем самым селективность окисления нафталина. [c.342]

    Селективное окисление нефтяных сульфидов. Нефтяные сульфиды окисляют в мягких условиях водными растворами сильных окислителей (перекиси водорода, азотной кислоты), а также органическими гидроперекисями. Целесообразно окислять сульфиды в среде сернистоароматического концентрата, свободного от парафино-нафтеновых углеводородов и смол. Методику, предложенную для окисления перекисью водорода индивидуальных сульфидов [36], применили для окисления нефтяных сульфидов сернисто-ароматических концентратов [37—39]. Условия окисления были такими, при которых углеводороды и другие сернистые соединения окислялись незначительно. Правда, меркаптаны легко окисляются в дисульфиды, однако этот процесс идет с меньшей скоростью, чем окисление сульфидов. [c.113]


Смотреть страницы где упоминается термин Селективное окисление: [c.106]    [c.180]    [c.454]    [c.14]    [c.123]    [c.66]   
Органический синтез. Наука и искусство (2001) -- [ c.192 ]

Органический синтез (2001) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Альдозы, селективное окисление альдегидной г уппы

Альдозы, селективное окисление альдегидной группы

Глубокое полное окисление селективность

Епифанова, А. 3. Дорогочинский, А. Ю. Брук. Изучение инициирующего влияния примесей натриевой щелочи, перекиси кумила и натриевой соли гидроперекиси изопропилбензола в изопропилбензоле на скорость и селективность процесса окисления его в гидроперекись

КИНЕТИКА И МЕХАНИЗМ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ Гороховатский, Селективность медного катализатора в реакциях окисления олефинов

Катализатор для селективного окисления углеводов

Катализаторы гетерогенного окисления селективность Избирательность

Кинетика и селективность реакции неполного окисления углеводородов

Кинетика селективного окисления

МЭА-очистки селективного окисления

Матиенко, Л. А. Мосолова Механизм селективного окисления этилбензола молекулярным

Мягкое окисление селективность

Новые методы селективного окисления метана в метанол

Окисление избирательность Селективность

Окисление селективное альдоз

Окисление селективное каталитическое

Окисление этилена селективность

Повышение селективности процесса окисления циклогексаиа

Полиоксисоединения, селективное окисление

Селективное окисление алканов

Селективное окисление ядра

Селективное окисление. Окисление о-ксилола

Селективное превращение толуола в продукты неполного окисления

Селективность гетерогеннокаталитического окисления углеводородов и типичные промышленные процессы

Селективность окисления

Селективность окисления

Селективность процессов глубокого окисления

Селективность процессов мягкого окисления

Селективность процессов окисления этилена

Схема окисления селективного оксида углерода

Технологические показатели селективного окисления

Технологические схемы селективного окисления

Углеводы селективное каталитическое окисление

диметил окисление боковой цепи, селективность

диметил окисление боковой цепи, селективность внутримолекулярное циклоприсоединение

диметил окисление боковой цепи, селективность как компоненты пищевых ароматизаторов

диметил окисление боковой цепи, селективность образованием пиридинов

диметил этил этоксикарбонил селективное окисление метильной групп

триметил селективное окисление



© 2025 chem21.info Реклама на сайте