Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокно химически окрашенные

    Изготовители тканей и изделий из полиэфирного волокна предпочитают покупать и держать на складе фабрик белое волокно с тем, чтобц, внимательно следя за модой, в любой момент иметь возможность окрасить новую партию в цвет, пользующийся спросом в настоящий момент. Нормал )-ным сроком пробега материала от загрузки мономера до изготовления готового текстильного изделия считают 10—15 сут — в этих условиях на смену ассортимента готовых изделий отводят не более 0,5—1 ч. Кроме того, на западе распространена практика пошива или вязания массовых изделий одинакового рисунка, но разных цветов. Все это заставляет красить волокно в один цвет небольшими партиями и в короткий срок, что не может быть обеспечено при поставке с химического завода больших партий окрашенных в массе волокон. [c.231]


    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]


    Штамм и его сотрудники [48Ь, 50] доказали химическую связь красителя с волокном, окрасив порошок частично гидролизованной целлюлозы Ремазоловым ярко-синим К и подвергнув его микробиологическому распаду под действием Се11и1отопаз ис1а. Им удалось выделить окрашенный растворимый продукт деструкции целлюлозы и доказать методом хроматографического анализа, что он является однородным веществом и что после полного гидролиза серной кислотой из него получается глюкоза. Впоследствии из гидролизата окрашенной целлюлозы были выделены гомогенные соединения, содержащие по 1 моль красителя и глюкозы. Эти соединения были подвергнуты исчерпывающему метилированию иодистым метилом и окисью серебра в диметилформамиде и затем связь с красителем гидролизовали щелочью, а метилглюкозид — кислотой. При сравнении с синтетическими метилглюкозами выяснилось, что глюкоза была замещена в положении 2 и 4. Полный количественный анализ показал, что замещение гидроксила у атома составляет 60%, а на обоих концах цепи—по 20% [534].  [c.317]


Химия целлюлозы (1972) -- [ c.349 , c.414 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна химические

Окрашенные волокна



© 2025 chem21.info Реклама на сайте