Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные линзы, использовани

    При использовании магнитных линз, рассеивающих пучок ионов, поверхность ядерных мембран может достигать нескольких квадратных [c.55]

    Основное отличие электронного микроскопа от оптического — использование потока электронов вместо лучей света, а вместо стеклянных линз — магнитных или электрических. На рис. 15 приведена упрощенная схема электронного микроскопа просвечивающего типа с магнитными линзами. [c.45]


    Хорошим примером использования в анализе первичных рентгеновских лучей является электронно-зондовый рентгеновский микроанализатор. В этом приборе электроны, испускаемые нагретой тонкой вольфрамовой ленточкой (диаметром 0,1 мм), ускоряются напряжением 5— 40 кВ и направляются на анализируемое вещество, которое служит мишенью. Система поддерживается под высоким вакуумом по пути к образцу пучок электронов проходит через одну или две магнитных линзы. Эти линзы имеют форму катушки с небольшим сквозным отверстием, в котором создается сильное магнитное поле. Изменяя напряженность этого поля, можно сфокусировать электронный пучок на очень малой площади (вплоть до одного квадратного микрона) на поверхности мишени. Рентгеновское излучение, которое испускается из этой небольшой области образца, проходит через диспергирующую систему и регистрируется. Анализ полученного спектра позволяет установить состав выбранной области образца. [c.101]

    Основным отличием электронного микроскопа от оптического является использование потока электронов вместо лучей света, причем вместо стеклянных линз применяются магнитные или электрические поля (рис. 43). Источником электронов служит вольфрамовая проволока, которая при накаливании испускает поток электронов. Электроны, пролетая через специальную электромагнитную систему, попадают на фотопластинку или на экран, давая увеличенное изображение предмета. [c.129]

    Ввернутые в корпус аппаратов шпильки подвергают циркулярному намагничиванию (рис. 93), обтюраторы проверяют с помощью соленоидов. Клапанные пластины и уплотнительные линзы контролируют пропусканием тока через оправку, на которую насаживают 8—10 пластин или линз (рис. 94). Монтажные цапфы проверяют циркулярным намагничиванием (рис. 95). В большинстве случаев на заводах отрасли применяют метод магнитной суспензии, а не сухой метод с использованием магнитного порошка. На рис. 96 приведены дефекты, выявленные магнитным методом. При оптимальных условиях контроля магнитным методом могут выявляться поверхностные и подповерхностные дефекты с раскрытием 5—10 мкм и глубиной 30—50 мкм и более, при этом дефекты округлой формы выявляются менее надежно. [c.139]

    Молекулы анализируемого вещества ионизируются в ионизационной камере 1 источника ионов под действием электронов, испускаемых накаленным катодом 2. Некоторые твердые вещества с малой упругостью пара могут ионизироваться методом так называемой поверхностной ионизации с использованием явления термоионной эмиссии, когда слой анализируемого вещества наносится на накаленную поверхность металла. Образовавшиеся положительные ионы ускоряются в продольном электрическом поле (ускоряющая линза 5) и фокусируются в узкий пучок прямоугольного сечения системой электрических линз, состоящей из вытягивающего электрода 4 и отклоняющего электрода 3. Ионный пучок содержит ионы всех атомов и молекул, находящихся в области ионизации. В камере анализатора магнитное поле разделяет пучок на ионные лучи, отличающиеся друг от друга отношением массы ионов к их заряду. [c.4]


    Позднее прибор был усовершенствован (Демпстер, 1935) путем использования радиального электрического поля, обладающего эффектом линзы, и однородного магнитного поля с эффектом призмы. Это привело к тому, что частицы стали описывать круги (вместо парабол в спектрографе Астона). Помимо этого, положительные ионы образуются при испарении анода или из соответствующей соли исследуемого элемента, осажденной на нити накаливания. Переведенные таким образом в летучее состояние атомы ионизируются при столкновении с электронами, образованными вспомогательной нитью накаливания. Затем ионы ускоряются потенциалом, приложенным между местом их образования и входным отверстием собственно спектрографа. Масс-спектр, полученный на таком приборе, приведен на рис. 199  [c.757]

    Просвечивающая электронная микроскопия. Разрешение оптических микроскопов имеет ограничение, связанное с длиной волны (А,) используемого излучения (угловое разрешение равно 1,22А/Д где В — диаметр объектива), и дальнейшее повышение разрешающей способности требует использования более коротковолнового излучения, которое к тому же должно позволять применение эффективных методов фокусировки. В качестве такого излучения наиболее часто используют электроны, электростатически ускоренные до различных энергий и фокусируемые магнитным полем в специальных электромагнитных линзах. Для генерации электронов используют три типа источников (в порядке возрастания интенсивности) 1) термоэмиссионные вольфрамовые У-образные катоды 2) термоэмиссионные катоды из монокристалла ЬаВ 3) катоды с полевой эмиссией. [c.244]

    Процесс нагрева электронным лучом основан на использовании кинетической энергии электронов, быстро движущихся в глубоком вакууме. Сжатый в магнитных и электростатических фокусирующих линзах поток электронов перемещается с большой скоростью от катода к аноду в сильном электрическом поле. Кинетическая энергия соударения электронов с поверхностью детали анода превращается в тепловую, что приводит к ее нагреву. [c.223]

    В 1933 г. Барбером [121] и более детально Стефенсом [1929, 1930] было показано, что действие линзы при 180-градусном отклонении в однородном магнитном поле является частным случаем фокусирующего действия любого клинообразного магнитного поля. Если центр кривой ионного пучка, проходящего через магнитное поле, совпадает с вершиной клина, т. е. пучок ионов входит и выходит из поля под прямым углом к его границе, и если пучок однороден по массе и энергии, то он фокусируется на линии, соединяющей точку образования ионов и вершину клинообразного магнитного поля, как это показано на рис. 4. Отношение дисперсии по массам к уширению изображения, вызываемому несовершенством фокусировки, достигает максимума при sin 6 = = 2sin ф, следовательно, теоретически максимальное разрешение достигается при этом асимметрическом построении. Однако ожидаемое улучшение незначительно и не компенсирует трудности, связанные с установкой масс-спектрометрической трубки и увеличением траектории ионов. Поэтому обычно используют симметричные приборы с простой фокусировкой. Теоретическая характеристика симметричного прибора не зависит от угла сектора прибор Демпстера представляет особый случай, когда секторный угол равен 180°. В течение ряда лет после выхода статей Барбера и Стефенса масс-спектрометры секторного типа не конструировались (хотя 60-градусные секторные магнитные поля использовались в масс-спектрографах с двойной фокусировкой [112]) и продолжалось использование 180-градусных приборов [1490, 1491, 1762]. [c.21]


Смотреть страницы где упоминается термин Магнитные линзы, использовани: [c.74]    [c.642]    [c.111]    [c.119]    [c.370]    [c.258]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.277 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Линза магнитная



© 2024 chem21.info Реклама на сайте