Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиус атома элементов второго периода

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]


    Для завершения внешних уровней атомы неметаллов присоединяют электроны и при этом наиболее активные из них образуют отрицательно заряженные ионы — анионы. В этом случае неметаллы являются окислителями. Способность присоединять электроны в каждом периоде возрастает по мере приближения к инертному элементу, а в каждой группе — по мере уменьшения радиуса атома или, иными словами, снизу вверх. Активнее всех присоединяют электроны атомы фтора. У остальных атомов неметаллов, изучаемых в средней школе, эта способность уменьшается в таком порядке О, С1, N, 5, С, Р, Н, 51 . Здесь следует подчеркнуть, что вторым после фтора в этом ряду стоит атом кислорода, а не хлора. [c.199]

    Суть поведения элементов 2-го периода состоит в том, что имеющиеся на втором уровне два подуровня (s- и р-орбитали) довольно значительно отличаются по энергиям. Потенциал ионизации резко падает при переходе от гелия к литию, потому что третий электрон, в соответствии с принципом Паули, располагается на 25-орбитали. Затем на этот же -подуровень попадает еще один электрон и под действием увеличившегося заряда ядра атом становится меньшего радиуса. Силы притяжения ядра обусловливают возрастание потенциала ионизации. Далее для величины этой энергии при движении вдоль периода наблюдается общее повышение с двумя небольшими скачками (уменьшение потенциала). Первый вызван размещением пятого электрона В на 2р-орбитали, а второй скачок происходит у кислорода, когда одна из р-орбиталей, на которых рань- [c.201]

    Вор входит в главную подгруппу III группы периодической системы элементов и имеет электронную конфигурацию ls 2s 2p под ним расположен алюминий. Во втором периоде при переходе от бора к углероду радиусы ромов уменьшаются, а в IV группе при переходе от углерода к кремнию — увеличиваются. Поэтому радиусы атомов бора и кремния близки. Бор существенно отличается от алюминия и обнаруживает большое сходство с кремнием. Бор образует три ковалентные связи с атомами других элементов. В зависимости от природы последних атом бора может образовать еще одну до-норноакцепторную связь, предоставляя р-орбиталь для электронной пары другого атома. Таким образом, бор в соединениях проявляет валентность, равную трем, или ковалентность, равную четырем. [c.368]

    Открытие и идентификация редкоземельных элементов осуществлялись в течение длительного периода времени, что объясняется сходством свойств этих элементов в связи с преобладанием у них трехвалентного состояния и близостью их атомных и ионных радиусов. С другой стороны, известно, что трудности, связанные с изучением трансурановых элементов, определяются не химическими свойствами, а ядерными. Действительно, с химической точки зрения изменения в свойствах сравнимы для элементов от актиния до урана, с одной стороны, в сериях V—Мо и Ьа—Ш (если поместить лантаниды в одну серию), с другой, однако, изменения в свойствах элементов Ьа—N(1 имеют мало общего с предыдущими. Примерог тому может служить постепенное изменение основного характера элементов от лантана к неодиму, в то время как это свойство быстро меняется в обратном направлении от актиния к урану. Атомные объемы мало изменяются в сторону уменьшения в первой серии и быстро увеличиваются во второй. Многообразие валентностей и, Ыр, Ри и Ат (ураниды), для которых известна максимальная валентность VI и минимальная III, не позволяет рассматривать эти элементы как химические гомологи N(1, Рт, 8т и Ей, так как ни один из этих последних не имеет валентности выше III, а 8т и Ей имеют малоустойчивую валентность II. Только начиная с Ст трехвалентное состояние является преобладающим в седьмом периоде и кюриды (2 = 96—103) становятся гомологами лантанидов 0с1 — Ьи. [c.125]


    При рассмотрении данных приведенной выше таблицы выявляются некоторые интересные моменты. Как правило, по мере увеличения числа электронных слоев в атомах аналогичных элементов (т. е. сверху вниз по группе) радиусы этих атомов возрастают. Однако элементы середин 6 периода (Н1—Аи) по размерам атомов практически не отличаются от соответствующих атомов 5 периода (Zг—Ад) а атомы актинидов даже меньше атомов соответствующих лантанидов. Если причиной первой аномалии можно считать лантанидиое сжатие, то причина второй не ясна. Непонятно и то, почему ход изменения радиусов актинидов (с миниму.мом на Np) иной, че.м у лантанидов. Обращают на себя внимание выскоки вверх атомных радиусов Ей и УЬ (ср. рис. Х1-48), а также Ат. [c.301]


Смотреть страницы где упоминается термин Радиус атома элементов второго периода: [c.456]    [c.63]    [c.632]    [c.458]    [c.458]    [c.82]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Второго периода элементы

Второго периода элементы атомы

Радиусы атомов



© 2025 chem21.info Реклама на сайте