Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные элементы

    Главная подгруппа VI группы периодической системы химических элементов Д. И. Менделеева, называемая также подгруппой кислорода, состоит из пяти элементов кислорода О, серы 8, селена 8е, теллура Те и полония Ро (последний радиоактивен). Внешние электронные слои их атомов содержат 6 электронов и имеют конфигурацию Главная особенность этих элементов — способность присоединять 2 электрона с образованием восьмиэлектронного слоя ближайшего инертного элемента, т. е. проявление степени окисления — 2  [c.109]


    В соответствии с изменениями потенциалов ионизации в периодах и группах в общем происходит относительное изменение свойств элементов. Однако потенциал ионизации не может служить единственной количественной мерой относительной металличности или неметалличности элементов. Действительно, самым высоким потенциалом ионизации обладает атом гелия, но так как он относится к инертным элементам, говорить о характере его свойств довольно трудно. Далее, если рассмотреть изменение потенциала ионизации в пределах второго периода (см. рис. 8, — Не), то обнаруживаются скачки. Потенциал ионизации у кислорода оказывается меньше, чем у азота. Такие скачки, связанные с некоторыми особенностями строения внешних электронных оболочек атомов, наблюдаются и в остальных периодах, хотя неметаллические свойства нарастают. [c.65]

    Периодическое изменение свойств элементов представлено в периодической таблице современного вида. При расположении элементов в порядке возрастания атомных номеров и группировке на основании общих свойств они образуют семь горизонтальных рядов, называемых периодами. Каждый вертикальный столбец - группа элементов - содержит элементы с близкими свойствами. Группа лития (Ы), состоит, например, из шести элементов. Все эти элементы - крайне реакционноспособные металлы, образующие хлориды и оксиды общей формулы ЭС1 и Э2О соответственно. Так же, как хлорид натрия, все хлориды и оксиды этих элементов — ионные соединения. В противоположность этому группа гелия, расположенная по правому краю таблицы, состоит из крайне инертных элементов (к настоящему времени известны соединения только ксенона и криптона). Элементы группы гелия известны под названием благородные газы. [c.127]

    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]


    В настоящее время существует несколько вариантов графического построения периодической системы. Рассмотрим один из них — короткопериодный (см. первый форзац). Эта таблица состоит из 10 горизонтальных рядов и 8 вертикальных столбцов, называемых группами. В первом горизонтальном ряду только два элемента — водород Н и гелий Не. Второй и третий ряды образуют периоды по 8 элементов, причем каждый из периодов начинается щелочным металлом и кончается инертным элементом. Четвертый ряд также начинается щелочным металлом (калий), но в отличие от предыдущих рядов он не заканчивается инертным элементом. В пятом ряду продолжается последовательное изменение свойств, начавшееся в четвертом ряду, так что эти два ряда образуют один так называемый большой период из 18 элементов. Как и предыдущие два, этот период начинается щелочным металлом К и кончается инертным элементом [c.21]

    В 1884 г. Н. А. Морозов, заключенный царским правительством за революционную деятельность в Шлиссельбург-скую крепость, начинает от тоски тюремной жизни изучать химию. Он знакомится с системой Д. И. Менделеева и становится ее ярым приверженцем. Н. А. Морозов ставит вопрос не наблюдается ли периодическая повторяемость свойств и среди углеводородов Он строит таблицу, подобную второй менделеевской, состоящую из восьми вертикальных столбцов (рядов) углеводородов и их радикалов. Сличая свои ряды (классы) углеводородов с группами таблицы Менделеева, Морозов приходит к неожиданному выводу — все классы углеводородов, за исключением предельных, являются веществами химически активными, так же, как и химические эле- менты в Периодической системе. Но между таблицами есть и (различие. У Морозова имеются инертные соединения (нуле-в 1я группа), а в таблице Менделеева нет. Возникает мысль а что если их только пока нет И он решается на предсказание существования в природе инертных элементов, отмечая, что это должны быть газы, искать которые следует в воздухе. Его прогноз подтвердился через девять лет. [c.70]

    Бор и алюминий—наиболее легкие представители р-элементов. Под названием / -элементов объединяются главные подгруппы 3, 4, 5, 6, 7 групп и инертные элементы (за исключением гелия). В пределах группы с увеличением атомного номера р-элемента усиливаются его металлические свойства. В периодах с увеличением атомного номера р-элемента ослабляются его металлические свойства и усиливаются неметаллические. [c.73]

    Существенным недостатком короткопериодной формы является то, что в ней непоследовательно выглядит восьмая группа в ней находятся как металлы железо-платинового семейства, валентность которых не достигает восьми, так и инертные элементы (благородные газы) кроме того, эти металлы произвольно сгруппированы по три. [c.27]

    Не, N6, Аг, Кг. Хе, Рп — инертные элементы или благородные газы. [c.273]

    Химические элементы по их свойствам принято разделять на два класса — металлические и неметаллические элементы. Атомы металлических элементов характеризуются способностью образовывать элементарные положительно заряженные ионы и не способны образовывать элементарные отрицательно заряженные ионы. Неметаллические элементы включают инертные элементы, которые обычно называют инертными газами, и активные элементы. Последние раньше называли металлоидами, но это название явно нецелесообразно, поскольку оно означает не противоположность, а, наоборот, подобие металлам. Теперь их стали называть неметаллами (или неметаллическими элементами), однако и это название неудачно, так как, во-первых, будучи негативным, оно раскрывает не наличие, а отсутствие определенных качеств [c.34]

    Очевидно, независимое позитивное название для этого класса химических элементов должно характеризовать свойства, отличающие их от металлических и инертных элементов. Поскольку данные элементы отличаются способностью своих атомов образовывать элементарные отрицательно заряженные ионы посредством присоединения электронов к нейтральным атомам, т. е. отличаются окислительной способностью, то и сами элементы следует назвать окислительными. [c.35]

    Между металлическими и окислительными элементами нет резкой границы. Утрата металлического характера неизбежно сопряжена с появлением окислительных свойств. Однако среди элементов встречаются-такие, у которых металлические свойства крайне ослаблены, а окислительные свойства выявлены еще недостаточно. Для таких элементов промежуточного характера было бы целесообразно использовать название металлоиды. К этому классу элементов могут быть отнесены по два элемента из каждого периода, а именно бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур, висмут, полоний. У всех этих элементов мы встречаемся с проявлением если не металлических, то во всяком случае ясно выраженных восстановительных свойств. Следует отметить, что даже у настоящих окислительных элементов (сера, селен, бром, иод, астат) также проявляются восстановительные свойства. В этом отношении от них резко не отличаются следующие за ними инертные элементы — криптон, ксенон, радон. Однако инертные элементы характеризуются полным отсутствием окислительных свойств. [c.35]

    Благородные газы — вещества, построенные из атомов инертных элементов. Характеризуются одноатомным состоянием, летучестью и электропроводностью особого рода, которая существенно отличается от металлической и может быть названа скользящей. Кристаллические [c.36]

    Атомы металлов не принимают электроны напротив, атомы неметаллов способны присоединять электроны. Причем сродство к электрону у них тем больше, чем ближе к инертному элементу неметалл в периодической системе, т. е. в пределах периода неметаллические свойства усиливаются слева направо. [c.92]


    Как видим, у элементов, расположенных в одном периоде, например от бора к фтору, электроотрицательность возрастает слева направо, У элементов, расположенных в одной группе, электроотрицательность наиболее выражена у элемента, стоящего выше. Величина электроотрицательности инертных элементов находится в соответствии лишь с их восстановительными свойствами как известно, окислительные свойства инертным элементам вообще не присущи. Если расположить неметаллические элементы по возрастающей величине относительной электроотрицательности, то получится следующий ряд  [c.175]

    Как видно, наиболее электроотрицательным элементом является фтор. Каждый из элементов обладает электроотрицательностью большей, чем элементы, стоящие в этом ряду слева от него. Для инертных элементов это находится в соответствии лишь с их восстановительными свойствами. [c.176]

    Исключение составляют неметаллы водород и бор, инертный элемент гелий, а также металлы Ое, 8п, РЬ, 5Ь, В , Ро, которые на наружном уровне имеют 4, 5 и 6 электронов. [c.85]

    Как видно, наиболее трудно первый электрон отрывается от атома инертного элемента, имеющего стабильные, законченные энергетические уровни. Второй электрон труднее всего оторвать от атомов элементов I группы, третий — от атомов [c.89]

    Положительно заряженные ионы образуют атомы всех элементов, за исключением инертных элементов и фтора. Если на внешнем уровне атома имеется один электрон и атом относится к 5-элементам, то он отдает, как правило, только один электрон и переходит в состояние однозарядного положительного иона. Так, щелочные металлы образуют только однозарядные ионы и+, Na+, К" ", НЬ , Сз+, Рг" . Если на внешнем уровне атома имеется два электрона и атом относится к 5-элементам, то, как правило, он отдает сразу два электрона и образует двухзарядный положительный ион. Так, атомы II группы периодической системы элементов (четный ряд) образуют ионы Ве +, Ме +, Са " , 5г +, Ba +, [c.113]

    В определенных условиях инертные элементы также могут образовать положительно заряженные ионы, [c.113]

    Наиболее трудно первый электрон отрывается от атома инертного элемента, имеющего стабильные, законченные энергетические уровни. Второй электрон труднее всего оторвать от атомов элементов I группы, третий — от атомов элементов II группы, так как в этих случаях отрываемый электрон принадлежит к законченному энергетическому уровню. Наоборот, очень легко отрывается первый электрон от атомов щелочных металлов, у которых он является единственным валентным электроном, дающим начало новому электронному слою  [c.115]

    У элементов главных подгрупп в пределах данного периода по мере повышения номера группы (т. е. общего числа электронов на внешней оболочке) металлические свойства понижаются, а неметаллические повышаются. Так, первый член каждого периода с конфигурацией внешнего слоя fls —щелочной металл (Li, N8, Кит. д.), а предпоследний член — с атомной конфигурацией вида пз пр — типичный неметалл (Р, С1, Вг и т. д.). Замыкает период, как уже отмечалось ранее, инертный элемент с атомной конфигурацией пз пр . [c.52]

    Не следует, однако, считать, что атом тем легче присоединяет электроны, чем прочнее удерживает свои собственные электроны, т. е. что сродство к электрону тем больше, чем больше потенциал ионизации / , Такой зависимости нет, так как на соотношение значений сродства к электрону и потенциалов ионизации сильно влияет структура электронной оболочки атома. Это можно наблюдать у атомов инертных элементов, потенциал ионизации которых велик, так как их энергетические уровни устойчивы, однако по той же причине их сродство к электрону очень мало. [c.117]

    Из электронной формулы гелия видно, что атом на внешнем (он же — единственный) слое содержит прочный электронный дублет, что обусловливает отсутствие заметной химической активности у этого элемента гелий относится к числу инертных элементов. Элементы Н и Не составляют -семейство. [c.44]

    Далее рассматриваемый период включает шесть элементов 4р-семейства со структурой (2 8 18) 4х 4р - " и заканчивается инертным элементом — криптоном (Кг 2 = 35). Его конфигурация (2 8 18) 4р . Атом криптона на внешнем Л -уровне содержит прочный октет электронов. [c.46]

    Замыкает шестой период элемент радон (Кп 2 = 86), атом которого во внешнем слое содержит октет электронов . ..бз бр . Радон относится к числу, инертных элементов. Структура его атома лежит в основе з-семейства элементов седьмого периода. [c.48]

    Как известно (гл. I, 5), химическую природу элементов определяет со ютание восстановительных и окис,тн тельных свойств не1"1-тральных атомов, количественной характеристикой которых являются значения энергии ионизации и энергии сродства к электрону, которые изменяются в зависимости от изменения заряда ядра и размеров атома с увеличением заряда ядра энергии ионизации и сродства к электрону увеличиваются, а с увеличением радиуса атома уменьшаются. В связи с этим в периодах энергия ионизации слева направо — от щелочных метал.лов к инертным элементам—увеличивается, а в группах сверху вниз уменьп1ается. 3 побочных подгруппах закономерность изменения эиергии ионизации сложнее. Энергия сродства к электрону, вообще изменяющаяся симбатно с изменением энергии ионизации, увеличивается для элементов от четвертой до седьмой главных подгрупп и резко падает ири переходе от седьмой к восьмой главной подгруппе. [c.108]

    Вещества, построенные из атомов инертных элементов, — благородные газы (гелий, неои, аргон, криптон, ксенон, радон). Характеризуются одноатомным состоянием, летучестью и электрической проводимостью особого рода, которая существенно отличается от металлической и может быть названа скользящей". В твердом состоянии образуют кристаллические решетки молекулярного типа (хотя в узлах их находятся атомы), отличающиеся крайней непрочностью. [c.111]

    В настоящее время в лабораторной практике и в химической промышленности широкое распространение получили скелетные сплавные катализаторы, частично лишенные указанных недостатков. Первые исследования в этом направлении были сделаны Ре-неем и А. А. Баггом [16, 17]. Реней разработал способы приготовления сплавов активных металлов (N1, Со и др.) и инертных элементов (А1, 51 и др.) и получал из них катализаторы путем полного удаления последних элементов с помощью щелочей или других реагентов. [c.33]

    Считается, что атомы инертных элементов или простейшие молекулы при интеркалировании фуллерита С ) заполняют только октаэдрические пустоты. Ранее исследования проводились на поликристаллических образцах, интеркалированных при довольно высоких давлениях и температурах или компактированных давлением до I GPa при комнатной температуре. В этих условиях возможны частичная полимеризация фуллерита С ) и образование дефектов в виде полимерных комплексов или цепочек. Поэтому для детального изучения интеркаляционной диффузии важное значение могут иметь эксперименты на образцах, свободных от напряжений и интеркалированных при низких давлениях. [c.126]

    Дополнительно к названным Н. П. Агафошиным и Д. Н. Трифоновым проблемам можно привести еще ряд. Как отмечается в [15], до сих пор составляет предмет дискуссии проблема места водорода, инертных элементов, триад, лантаноидов и актиноидов . И этим еще не исчерпываются все проблемы системы. Например, не решены вопросы парности первого периода, нулевой и восьмой валентных групп, деления валентных групп на две подгруппы (главную и побочную), существования XI и далее валентных групп и др. По ходу дальнейшего рассмотрения изобразительно-структурных возможностей и прогностических способностей спиральной системы химических элементов мы их будем затрагивать. Наличие такого большого перечня проблем у табличной модели Системы химических элементов можно характеризовать как ее кризис. [c.168]

    Однако часто наблюдаются отклонения от правила Сиджвика. Например, совершенно устойчивый мономерный ион [Р1(ЫНз)4 + имеет ЭАН, неравный атомному номеру следующего за платиной инертного элемента родона. При вычислении эффективного атомного номера [Со(ЫНз)5С1]С12 надо учитывать строение комплексного соединения, заряд комплексного иона, атомный номер центрального атома. Атомный номер Со равен 27. Пять молекул аммиака образуют донорно-акцепторные связи за счет свободных пар электронов. Заряд комплексного иона +2. Внутрисферная хлорогруппа предоставляет для связи один электрон. Суммируя, находим, что значение эффективного атомного номера пентамминахлорокобальтихлорида равно 27+5-2+[ —2—36, т. е. соответствует атомному номеру инертного газа аргона. Для соединения триамминового типа [Со(ЫНз)зС1з] он также равен l27-f 3 2 + 3= 3 6. Таким образом, при переходе от соединений одного типа к другому эффективный атомный номер не изменяется. [c.247]

    Основным недостатком этих трех глгвных вариантов периодической системы является отсутствие точного соответствия между изменением химического характера элементов и их расположением. Во всех трех вариантах предусматривается разделение элементов на три класса инертные, металлические и окислительные — с непрерывным переходом между двумя последними через промежуточные типы. Однако это разделение, если не считать только выделения инертных элементов, проведено крайне неясно, в основе его лежат весьма условные критерии и оно никак не оттенено какими-либо изобразительными средствами. Совершенно явно элементы разделены на группы лишь П0 признаку валентности. Однако, как это уже указано выше, в отдельных частных случаях действительная валентность элементов не (Совпадает с групповой, табличной. Все три варианта не отвечают также мдее последовательности и непрерывности изменения качества атомов ло мере их усложнения (т. е. возрастания порядкового номера), поскольку все они используют прямоугольную форму с обязательным помещением в конце горизонтальных рядов инертных элементов (или элементов железо-платинового семейства). [c.26]

    Наряду с этим при взаимодействии с более сильными, чем он, восстановителями водород может сам восстанавливаться. Это обусловлено тем, что на первом энергетическом уровне наиболее устойчивым является сочетание из двух электронов, а водородному атому недостает всего одного электрона для такой устойчивой конфигурации. При взаимодействии с атомами, содержащими слабо связанные электроны (Li, Na, К, Са и др.), атом водорода образует сильно полярные (в пределе — ионные) связи, в которых водородному атому принадлежит отрицательный заряд. Эти соединения называются гидридами металлов (NaH, КН, aHj). Водород в них находится в степени окисления — 1 и при разложении электролизом этих соединений он выделяется на аноде водород выполняет функции окислителя. В этих реакциях и в свойствах гидридов металлов водорода проявляется аналогия водорода с галогенами. Это объясняется тем, что атомам водорода, как и атомам галогенов, недостает по одному электрону до устойчивой конфигурации атомов инертных элементов. [c.46]

    Назва11ия лантаниды и актиниды заменены на лантаноиды и актннопди . Все инертные элементы, гал01 ены, халькогены, а также N. Р, Ах, Н, С, 81, Ое и В условно называют — неметаллические элементы. Все остальные элементы условно называются металлическими элементами. [c.273]

    Рассматриваемый период начинается двумя элементами з-семей-ства (Ь1 и Ве), их структура (Ь ) 2s . Далее следуют шесть элементов р-семейства со структурой (15 ) 2p . Заканчивается период элементом неоном, атом которого имеет структуру (1з ) 2з 2р. Внешний электронный слой I состоит из восьми электронов. Восемь электронов во внешнем слое образуют прочную электронную конфигурацию — октет (лат. ос1о — восемь). Неон—инертный элемент. [c.45]


Смотреть страницы где упоминается термин Инертные элементы: [c.94]    [c.40]    [c.109]    [c.102]    [c.35]    [c.235]    [c.87]    [c.92]    [c.45]    [c.47]   
Смотреть главы в:

Неорганическая химия -> Инертные элементы


Неорганическая химия (1987) -- [ c.401 ]

Пособие по химии для поступающих в вузы 1972 (1972) -- [ c.200 , c.202 ]

Физическая химия Книга 2 (1962) -- [ c.0 , c.478 , c.530 , c.546 , c.549 , c.552 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон также Инертные элементы

Водород и гелий как прототипы химически активных и химически инертных элементов и как кайносимметричные типические представители гомологичных им по группе щелочных и щелочноземельных металлов

Воздух. Инертные элементы

Инертные благородные газы открытие элементов

Инертные элементы (благородные газы)

Инертные элементы адсорбция

Инертные элементы атомные веса

Инертные элементы давление пара

Инертные элементы константы сил притяжения

Инертные элементы криптон

Инертные элементы ксенон

Инертные элементы объемы

Инертные элементы оптические постоянные

Инертные элементы поверхностные свойства

Инертные элементы постоянные уравнения

Инертные элементы радиусы

Инертные элементы температура плавления

Инертные элементы термические данные

Инертные элементы энергия решетки

Инертные элементы энтропия

Инертные элементы эффективный заряд ядра

Инертный газ

Неон Инертные элементы

Радон также Инертные элементы

Распространенность газов инертных в космосе естественных короткоживущих радиоактивных элементов

Степень окисления элементов инертных газов

Стереохимия некоторых элементов подгрупп В инертная пара электронов



© 2025 chem21.info Реклама на сайте