Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерода атом ковалентный радиус

    Зная расстояния между атомами и углы между связями, можно в простых случаях построить модель молекулы органического вещества и, таким образом, определить ее форму и размеры. При построении модели необходимо помнить, что углеродная цепь молекулы (например, углеводородов парафинового ряда) представляет собой ломаную линию, вследствие чего часть длины молекулы, приходящаяся на один атом углерода, меньше его ковалентного радиуса. Если принять, что ковалентный радиус равен [c.64]


    В третьем случае атом углерода (гибридизация р) непосредственно связан с двумя атомами, образуя линейную конфигурацию. При переходе от одного типа координации к другому не только меняются валентные углы, но и происходит изменение ковалентного радиуса атома углерода. Для оценки атомных расстояний приходится принимать во внимание как тип образующейся связи (простая, двойная или тройная), таки состояние гибридизации. На основании многочисленных электронографических измерений предложена следующая система ковалентных радиусов углерода (табл. 7)  [c.140]

    Величина радиуса молекулы складывается из долей расстояний между соседними атомами, например расстояние между атомами водорода и углерода (ковалентные радиусы соответственно равны 0,30 и 0,77 А) в связи Н—С составит 0,30 + 0,77 = 1,07 А. Значение ковалентного радиуса зависит также от того, какими связями атом соединен с другими соседними атомами, поэтому [c.63]

    Рассмотрим геометрию более сложных молекул, например простейшей из аминокислот — глицина NHg— Hg—СООН. Построим его каркасную модель. Для этой модели приближенное определение валентных углов и межъядерных расстояний осуществить легко. Карбоксильный атом углерода так же, как в карбонат-ионе С0 , имеет р -гибридизацию, а остальные атомы (средний атом углерода, азота аминогруппы и атом кислорода гидроксильной группы) имеют sp -гибридизацию. Но, как видно из рис. 11.28, валентные углы и длины связей, которые можно оценить по ковалентным радиусам, не определяют геометрию молекулы глицина полностью одинарные связи N—С, С—С и О—С в этой молекуле обладают незатрудненным, практически свободным осевым вращением. Если условимся распо- [c.191]

    В зависимости от валентного состояния атома углерода различи также и межядерные расстояния в связях С—К если углеродны атом является насыщенным, длина связи равна сумме ковалентны радиусов если же углеродный атом входит в ароматический цик, или связан кратной связью с каким-либо другим атомом, длина свя 311 С—N меньше, чем сумма ковалентных радиусов (табл. 24). [c.100]

    Величины эффективных радиусов помогают объяснить и предсказать длины связей в других ковалентных соединениях галогенов. Например, если атом хлора образует связь с атомом углерода (как в четыреххлористом углероде ССЦ), то длину связи С—С1 можно представить суммой ковалентных радиусов атома хлора и атома углерода. Ковалентный радиус углерода, определенный в алмазе, равен 0,77 А, поэтому длина связи С—С1 приблизительно будет равна (0,77 0,99) = 1,76 А. Длина связи углерод — хлор, определенная экспериментально, равна 1,77 А. [c.527]


    Сэндвичевая структура является самой устойчивой не только для ковалентных комплексов, использующих -орбитали, но н для ионных кристаллов — для катиона и двух отрицательно заряженных циклов. Интересно и необычно строение комплекса бериллия. Предложены два возможных строения [Ве(ср)г]. Первое основано на интерпретации данных по дифракции электронов в газовой фазе [65] (рис. 13.20, а). Атом бериллия приближен к одному циклу, расстояние между двумя циклами (337 пм) определяется отталкиванием между ними, что вытекает из ван-дер-ваальсова радиуса углерода (167—170 пм). Малый по размерам ион Ве + поляризует л-облако одного цикла, и образуются энергетически выгодные короткая ковалентная связь и длинная ионная связь. Второе возможное строение, по рентгеноструктурным данным, для твердого бериллоцена — смешанный сэндвич, содержащий а-связь металла с одним циклом и л-связь с другим [66] (рис. 13.20,6). [c.437]

    Валентные углы многовалентных атомов с относительно большими ковалентными радиусами, т. е. с длинными связями, обычно меньше 109° например, валентные связи шестивалентного атома кобальта перпендикулярны одна к другой, т. е. угол связи 90°. Углы связи небольших трехвалентных или двухвалентных атомов (кислород, азот) приближаются к углам связей атома углерода. С пространственной точки зрения атом в этом случае занимает центр правильного тетраэдра. Соседние химически связанные атомы расположены в двух или трех вершинах тетраэдра, а остающаяся вершина или остающиеся вершины заняты свободными электронными парами. [c.9]

    На рис. 1.1 изображены атомы углерода и водорода в виде кружков разного диаметра на самом деле модели атомов представляют собой щары, размер которых в определенном масштабе характеризует их ван-дер-ваальсовы радиусы. Когда образуется химическая связь, то атомы подходят друг к другу ближе, чем это отвечает ван-дер-ваальсовым радиусам. Чтобы смоделировать это, надо срезать часть щара (как срезают дольку лимона или яблока), причем расстояние от центра щара до среза должно соответствовать ковалентному радиусу. Складывая атомы-шары срезанными частями, получают полусферическую модель (рис. 1.2). В ней расстояния между центрами шаров правильно передают длину связи как сумму ковалентных радиусов (в нашём примере—углерода и водорода). Естественно, что на шаре, моделирующем атом углерода в состоянии 5р -гибридизации, [c.9]

    Учитывая, что атом азота находится в состоянии р -гибридиза-ции, и предполагая, что при этом происходит уменьшение ковалентного радиуса на 0,02 А, как и для углерода, находим  [c.15]

    Может возникнуть вопрос почему углерод образует ковалентные связи путем обобщения электронов, а не склонен к образованию связей путем Отдачи или принятия электронов Имея четыре валентных электрона,, атом углерода должен был бы принять еще четыре электрона, чтобы образовать устойчивый октет. Между тем после присоединения первого электрона углерод приобрел бы отрицательный заряд и подход каждого нового электрона к аниону небольшого размера (радиус атома углерода мал) требовал бы все большей затраты энергии поэтому образование иона С крайне невыгодно. Так же труден и отрыв четырех электронов, приводивший бы к образованию иона поскольку каждый последующий электрон должен был бы уходить, преодолевая притяжение остающегося катиона. Гораздо более благоприятны условия для образования ковалентных связей путем обобщения электронов, при котором не возникают заряды. [c.32]

    Атом четырехвалентного углерода следует изготовить в виде шара, отвечающего радиусу действия / =1,8, и отрезать от него симметрично 4 части так, чтобы расстояние от центра шара до поверхности среза было равно ковалентному радиусу— п=0,77 (рис. 11). [c.58]

    Энергия атомных кристаллов с ковалентными связями зависит от прочности связей. Например, у алмаза энергия решетки очень велика ( 170 ккал г-атом), у кристаллических кремния и германия 86 и 85 ккал г-атом. Эти значения коррелируют с атомными радиусами 0,77 1,17 и 1,22 А у углерода в алмазе, у кремния и у германия соответственно. Температура плавления симбатно с теплотой сублимации уменьшается 3900° С (алмаз), 1415 С (Si), 958° С (Ge). [c.132]

    Силициды. Атом кремния имеет сравнительно большой радиус (1,17 А) и большинство силицидов, строго говоря, нельзя относить к соединениям внедрения — они занимают промежуточное положение между соединениями внедрения и интерметаллическими соединениями. При образовании твердых растворов с переходными элементами IV группы атомы кремния могут входить в решетку и по принципу внедрения, и по принципу замещения. Кремний — электронный гомолог углерода, поэтому единственный фактор, мешающий образованию фаз внедрения,— размерный. В низших силицидах сохраняется преимущественно металлический характер связи, а структура их сходна со структурой металлов. В высших силицидах наблюдается тенденция к преобладанию ковалентной связи и образованию сложных структур. Силициды обнаруживают сходство с карбидами, с другой стороны, они во многом родственны боридам. [c.235]


    Повышенная реакционная способность функциональных групп (например, С1, Вг, ОН, OR, O OR, NH2, SH), находящихся у атомов кремния, алюминия, титана, фосфора и других элементов, чем у углерода. Это объясняется тем, что, например, атом кремния в полтора раза крупнее, чем атом углерода имеет ковалентный радиус 0,117 нм, тогда как радиус атома углерода составляет всего 0,077 нм. Отсюда следует, что функциональные группы находятся у атома Si на значительно большем расстоянии друг от друга, чем у атома С (например, расстояния между атомами С1 в SI I4 и ССЦ равны соответственно 0,329 и 0,298 нм) и, следовательно, центральный атом кремния менее экранирован, чем атом углерода. К тому же кремний, как и другие элементы, более электроположителен, чем углерод, и поэтому более подвержен нуклеофильной атаке, и, таким образом, функциональные группы, стоящие у этих элементов, более активны в различных реакциях. [c.16]

    Модели атомов соединяются между собой плоскостями срезов. Например, тетраэдрический атом углерода представлен в виде шара с радиусом, пропорциональным его ван-дер-ваальсову радиусу (г = 0,18 нм). От этого шара симметрично срезаны четыре сегмента таким образом, чтобы расстояние от центра шара до поверхности среза было пропорционально ковалентному радиусу атомй углерода (Г2 = 0,077 нм) (рис. 3.2, в). [c.57]

    По внешнему электронному уровню, радиусам атомов и ионов группа делится на две подгруппы IVA — С, Si, Ge, Sn, Pb и IVB — Ti, Zr, Hf, Ku. По структуре предвнешнего электронного уровня главную подгруппу IVA можно разделить на два семейства С, Si к семейство германия. Величины / ат и Rkoh изменяются закономерно от С к РЬ, и, значит, строение предвяешнего электронного уровня мало сказывается на свойствах элементов. Главная роль принадлежит изменению размеров атома, т. е. электронам внешнего уровня. В IV группе ясно проявляется тенденция усиления металлических свойств с увеличением порядкового номера при сохранении подобия внешнего энергетического уровня электронов. Углерод типичный неметалл, кремний фактически тоже неметалл титан, сохраняя в свободном состоянии качества металла, в степени окисления -Ь4 образует связи ковалентного характера и в некоторых отношениях соединения его с этой степенью окисления похожи на элементы подгруппы IVA (Si, Ge и особенно Sn). Германий — полупроводник, а остальные элементы — металлы. Изменение степени окисления в соединениях элементов двух подгрупп IVA и IVB взаимно противоположно в главной подгруппе с увеличением порядкового номера устойчивость высшей степени окисления падает (для свинца более стабильно состояние +2), а в подгруппе т та-на растет. [c.326]

    Атом углерода в состоянии хр -гибридизации следует изготовить в виде шара с радиусом 1,8 А (ван-дер-ваальсов радиус атома углерода) и отрезать от него симметрично четыре части так, чтобы расстояние от центра шара до поверхности среза было равно ковалентному радиусу — 0,77 А (рис. 5 и 6). Для построения моделей этиленовых, ацетиленовых, аллено-вых, ароматических соединений необходимы другие модели атома углерода. Точно также специальными моделями изображается атом связанного двойной связью кислорода, атом связанного двойной или тройной связью азота и т. д. Пользуясь наборами соответствующих атомов, можно построить модели сложных органических соединений (рис. 7, 8). [c.26]

    К структуре переходного состояния механизм такой структурной дестабилизации включает деформацию валентных углов, сближение реагирующих атомов до межатомных расстояний, меньших суммы вандерваальсовых радиусов, а также растяжение ковалентных связей до длины, превосходящей сумму ковалентных радиусов связанных атомов [631, 739, 740]. Наиболее хорошо изучен случай структурной дестабилизации, происходящей при присоединении Ы-аце-тиламино-сахарного остатка, к субцентру D-лизoцимa [748]. Тетраэдрический (5/ ) -атом углерода-1 искажен, и соответствующее напряжение ослабляется в переходном состоянии,где атом углерода- [c.280]

    Систематическое исследование соединений, в которых металлический атом связал с несколькими углеродными атомами, началось с работы Пфафа и Фишера (1953 г.). Рентгеноструктурный анализ ферроцена Ре (С5Нб)2 (бис-циклопентадиенпла двухвалентного железа) показал, что структура его молекулярная и состоит из двух плоских параллельно расположенных углеводородных пятиугольников, причем каждая вершина (атом углерода) одного пятиугольника приходится между двумя вершинами второго пятиугольника. Между этими двумя пятиугольниками в центре симметрии на оси пятого порядка молекулы размещается атом железа (рис. 377). Такие структуры стали называть сендвичевыми. Расстояние Ре — С, равное 2,0 А, точно соответствует сумме ковалентных радиусов. Поскольку плоская форма органических радикалов связана с наличием в них я-связей, и этот же тип связи обусловливает соединение их с металлическим атомом, постольку подобные соединения стали называть я-комплексами, а самую связь — многоцентровой. [c.386]

    К структуре переходного состояния механизм такой структурной дестабилизации включает деформацию валентных углов, сближение реагирующих атомов до межатомных расстояний, меньших суммы вандерваальсовых радиусов, а также растяжение ковалентных связей до длины, превосходящей сумму ковалентных радиусов связанных атомов [631, 739, 740]. Наиболее хорошо изучен случай структурной дестабилизации, происходящей при присоединении Ы-аце-тиламино-сахарного остатка, к субцентру D-лизoцимa [748]. Тетраэдрический (5/ ) -атом углерода-1 искажен, и соответствующее напряжение ослабляется в переходном состоянии,где атом углерода-1 становится планарным чр ). Если учитывать десольватацию остатка Азр-42 при связывании субстрата, то энергия дестабилизации составит по крайней мере + 8,6 ккал/моль. Эта энергия восполняется общей связывающей энергией олигосахаридного субстрата. [c.280]

    Многие свойства этих элементов становятся понятными при рассмотрении некоторых свойств их атомов. Азот сильно электроотрицателен по электроотрицательности (азот занимает третье место в ряду электроотрицательности) его превосходят лишь кислород и фтор. Электроотрицательности фосфора, мышьяка, сурьмы и висмута имеют значения соответственно 2,1, 2,0, 1,8 и 1,7. Усиление металлического характера, наблюдающееся в ряду от азота до висмута, и большая разница в устойчивости трихлоридов этих элементов могут быть обусловлены именно таким изменением электроотрицательности. В гл. X уже обсуждался вопрос об устойчивости иона аммония N11 . Азот, подобно углероду и кислороду, обладает свойством образовывать кратные связи, аналогичные связям в элементарном веш,естве Ns N фосфор и более тяжелые элементы этой группы образуют, как правило, лишь одинарные связи. Атом азота невелик, ковалентный радиус одинарной связи азота равен 0,70 А и вокруг такого атома свободно размещаются только три атома кислорода. Фосфор, имеющий ковалентный радиус 1,10 Л, и мышьяк с ковалентным радиусом 1,21 А имеют уже достаточно большие размеры и вокруг них могут свободно размещаться по четыре атома кислорода в тетраэдрической конфигурации, как это имеет место в случае фосфорной кислоты НзРО и мышьяковой кислоты НзАз04. Ковалентный радиус одинарной связи сурьмы равен 1,41 А, и атом сурьмы может окружить себя шестью кислородными атомами, как это и наблюдается в случае сурьмяной кислоты [c.302]

    Наблюдаются также отклонения от аддитивности длин связей между атомами кислорода и углерода, а также азота (аминного) и углерода, если атом углерода находится в -состоянии. Так, в то время как в этиловом спирте длина связи С—О 1,43 А, длина той же связи в резорцине или флороглюцине равна 1,36 А. Длина связи К—С5р2, вычисленная как сумма ковалентных радиусов, равна 1,44 А однако в ацетанилиде длина С—Ы-связи равна 1,426 А, в ацетамиде 1,36 А, в мочевине 1,33 А, в транс-азобензоле 1,41 А. [c.110]

    С другой стороны, известно, что на атоме углерода группы OR есть некоторый положительный заряд [144]. Так что, если бы расстояние Re—С (где С — атом углерода заместителя OR) было меньше суммы вандерваальсовых радиусов рения и углерода, можно было бы предположить взаимодействие я-акцепторной орбитали углерода с заполненной орбиталью рения. К сожалению, вандер-ваальсов радиус рения не определен. Однако известно, что ван-дерваальсов радиус атома всегда больше ковалентного. Последний для рения можно оценить следующим образом. Расстояние Re—С (где С — атом углерода циклопентадиенильного кольца) в исследованном соединении равно 2,31 А. Ковалентный радиус углерода 0,77 А. Тогда ковалентный радиус рения равен 1,54 Л. Далее, [c.213]

    При расчете длин связей нужно иметь в виду, что ковалентный радиус углерода, образующего двойную связь, вычислялся из данных для соединений типа КгС—СНг, в которых атом углерода находится в состоянии хр -рибридизации. В рассматриваемом соединении атом углерода находится в состоянии р-гибридизации, что должно сказываться на величине его ковалентного радиуса. Предположив, что для атома углерода, образующего двойную связь, при переходе от к р-гибридизации наблюдается такое же уменьшение ковалентного радиуса, что и для атома углерода, образующего простую связь, находим  [c.15]

    Средняя длина связи Ки—Скарбидн. значительно короче суммы одноювязных ковалентных радиусов Ки и нейтрального атома углерода (1,494-0,77=2,26 А). Однако учет того обстоятельства, что карбидный атом углерода передает атомам КЦ(4). и КЦ(5) по одному электрону для сообщения им устойчивой 18-электронной конфигурации, заставляет авторов принять величину радиуса равной 0,60 А и тогда длина связи Ки— Скарбпдн. становится близкой к сумме радиусов 2,09 А. [c.206]

    Это объясняется тем, что атом кремния имеет значительнс большие размеры (ковалентный радиус атома 81 равен 0,117 нм) чем атом углерода (ковалентный радиус атома С paвe  [c.136]

    Атом углерода в состоянии 5рЗ-гибридизации следует изготовить в виде шара с радиусом 0,18 нм (ван-дер-ваальсов радиус углерода) и срезать симметрично четыре части так, чтобы расстояние от центра шара до поверхности среза было равно ковалентному радиусу — 0,077 нм (рис. 46). Для построения моделей этиленовых, ацетиленовых, алленовых и ароматических углеводородов необходимы другие модели атома углерода. [c.175]

    Вор входит в главную подгруппу III группы периодической системы элементов и имеет электронную конфигурацию ls 2s 2p под ним расположен алюминий. Во втором периоде при переходе от бора к углероду радиусы ромов уменьшаются, а в IV группе при переходе от углерода к кремнию — увеличиваются. Поэтому радиусы атомов бора и кремния близки. Бор существенно отличается от алюминия и обнаруживает большое сходство с кремнием. Бор образует три ковалентные связи с атомами других элементов. В зависимости от природы последних атом бора может образовать еще одну до-норноакцепторную связь, предоставляя р-орбиталь для электронной пары другого атома. Таким образом, бор в соединениях проявляет валентность, равную трем, или ковалентность, равную четырем. [c.368]

    II периоде при переходе от бора к углероду радиусы атомов уменьшаются, а в IV группе при переходе от углерода к кремнию — увеличиваются. Поэтому радиусы атомов бора и кремния близки. Бор существенно отличается от алюминия и обнаруживает большее сходство с кремнием. Бор образует три ковалентные связи с атомами других элементов. В зависимости от природы последних атом бора может образовать еще одну донорко-акцепторную связь, предостамяя р-орбиталь для электронной пары другого атома. Таким образом, бор в сое- [c.340]


Смотреть страницы где упоминается термин Углерода атом ковалентный радиус: [c.214]    [c.214]    [c.168]    [c.95]    [c.510]    [c.259]    [c.304]    [c.214]    [c.247]    [c.34]    [c.91]    [c.76]    [c.195]    [c.116]    [c.293]    [c.26]    [c.161]    [c.26]   
Принципы органического синтеза (1962) -- [ c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Ковалентность атома

Радиусы атомов

Радиусы ковалентные



© 2025 chem21.info Реклама на сайте