Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганическая химия соединения и элементы высокой степени

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Четные степени окисления для азота сравнительно мало характерны. Однако некоторые из них исключительно интересны и важны в неорганической химии и технологии. К числу таких соединений относится оксид азота (+2) (см. табл. 6). Молекула N0 содержит нечетное число электронов и по существу представляет собой обладающий малой активностью радикал. Молекула N0 достаточно устойчива и мало склонна к ассоциации. Только в жидком состоянии оксид азота (+2) незначительно ассоциирован, а его кристаллы состоят из слабо связанных димеров N2O2. Несмотря на эндотермичность и положительнуго величину энергии Гиббса образования NO из простых веществ, оксид азота (+2) не распадается на элементы и химически довольно инертен. Дело в том, что согласно ММО порядок связи в N0 высок и равен 2,5. Молекула N0 прочнее молекулы [c.257]

    Дальнейшие различия между применениями оптической активности в органической и неорганической химии обнаруживаются в свойствах симметрии изучаемых соединений. Большинство типов органических оптически активных соединений, недавно подробно изученных, например стероиды и терпены, относятся к веществам с асимметричными молекулами, т. е. у них отсутствует какой-либо элемент симметрии. В противоположность этому многие изученные координационные соединения обладают сравнительно высокой степенью симметрии, наличие которой обычно очень помогает интерпретации результатов. Поэтому представляется более целесообразным вместо неопределенного и часто неправильно применяемого слова асимметрия более широко пользоваться введенным Пастером [3] термином диссимметрия (который означает наличие достаточно низкой симметрии, допускающей существование энантиомеров). [c.104]

    Следует еще раз подчеркнуть, что схема Косселя — это чрезвычайно грубое упрощение. Связь О—Н не является ионной, и расстояние между центрами атомов кислорода и водорода никогда не равно 1,32 А, ион водорода утоплен в электронных оболочках кислорода (см. стр. 209). Кроме того, в случае высоких степеней окисления связь между-элементом Э и кислородом также не является ионной, и степень окисления, как указывалось выше, не соответствует заряду иона элемента. Однако несмотря на все это, схема Косселя в большинстве случаев приводит к совершенно правильным качественным выводам при сопеставлении сходных соединений, Скажем, гидроксидов элементов, принадлежащих к одной и той же группе периодической системы. Эта неожиданная применимость столь грубого построения обусловлена тем, что даже в случае связей, сильно отличающихся от ионных, их прочность растет с уменьшением межатомных расстояний (а следовательно, и вычисляемых из ни радиусов ионов ) и с увеличением степени окисления. Часто степень окисления приблизительно показывает число электронов данного атома, принимающих участие в образовании химической связи. Чем больше электронов участвует в образований связей, тем прочнее связи. Поэтому схема Косселя полезна для первоначальной общей ориентировки в многообразном материале неорганической химии. [c.89]



Смотреть страницы где упоминается термин Неорганическая химия соединения и элементы высокой степени: [c.498]    [c.4]    [c.155]    [c.95]    [c.310]    [c.49]    [c.310]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ХИМИЯ J- И -ЭЛЕМЕНТОВ

Химия неорганическая

Элементы II соединения

Элементы и неорганические соединения



© 2025 chem21.info Реклама на сайте