Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород электронная оболочка

    Напишите электронные формулы строения атомов кислорода, серы, селена и теллура. В чем сходство и в чем различие в их электронных оболочках Как это отражается на свойствах элементов  [c.63]

    Строение внешней электронной оболочки атома Кислород Сера Селен Теллур [c.452]

Рис. 16.12. РФС-спектр электронов оболочки и валентных электронов кислорода, возбужденного рентгеновским излучением KaMg. Рис. 16.12. РФС-<a href="/info/1496606">спектр электронов оболочки</a> и <a href="/info/7182">валентных электронов</a> кислорода, <a href="/info/1745745">возбужденного рентгеновским</a> излучением KaMg.

    Окислы. Атом кислорода невелик, его радиус меньше радиусов атомов углерода и азота однако настоящие фазы внедрения кислорода — только твердые растворы и низшие окислы переходных металлов. В силицидах и боридах фактором, препятствующим образованию фаз внедрения, является большой атомный радиус, в окислах такой фактор — электронная структура атома кислорода. Электронная оболочка атома кислорода ls 2s 2p имеет два неспаренных электрона. Кислород подчиняется правилу октета, и завершенная электронная структура может быть получена путем приобретения двух электронов. Поэтому у кислорода донорная способность ослаблена склонностью к поглощению электронов. Цирконий и гафний легче отдают электроны, поэтому только титан образует с кислородом фазу переменного состава на основе окисла TiO с преимущественно металлической связью (радиус кислорода в ней 0,7 A) и координационным числом титана 6. [c.236]

    Выделением энергии сопровождается присоединение одного электрона к атомам кислорода, серы, углерода и некоторым другим. Таким образом, для указанных элементов силы притяжения к ядру дополнительного электрона оказываются большими, чем силы отталкивания между дополнительным электроном и электронной оболочкой атома. [c.35]

    Однако исходя из такой формулы невозможно объяснить, почему молекула СО имеет очень небольшой дипольный момент (0,1 Д у формальдегида р, = 2,3 Д) и почему, несмотря на наличие только секстета электронов на внешней электронной оболочке атома, углерода, молекула СО химически сравнительно инертна, а не ведет себя подобно карбену. Остается предположить, что в молекуле СО достройка внешнего электронного уровня атома углерода до октета осуществляется внутри самой молекулы за счет одной из неподеленных пар р-электронов атома кислорода  [c.393]

    У всех элементов, находящихся в одной и той же подгруппе периодической системы, строение внешних электронных оболочек одинаково, поэтому в свойствах таких элементов наблюдается наибольшее сходство, хотя металлические свойства в группе сверху вниз нарастают. Характер изменения свойств в группах элементов в данном случае определяется главным образом изменением радиусов атомов. Однако необходимо обратить внимание на следующее. При переходе в группе от второго к третьему периоду свойства элементов меняются настолько резко, что объяснить это одним лишь изменением радиуса атома нельзя. Например, кислород бывает только двухвалентным, а сера и все остальные элементы данной подгруппы могут иметь валентность 2, 4 и 6. Для фтора характерна исключительно одновалентность, в то время как хлор и остальные галогены могут быть 1-, 3-, 5- и 7-валентными. Такое изменение свойств при переходе от второго к третьему периоду обусловлено некоторыми особенностями структуры внешних электронных оболочек атомов элементов второго периода, с [c.62]


    Наблюдающаяся высокая химическая активность )адикалов обусловлена незаполненностью их электронных оболочек. Характерна аналогия между химическими свойствами гидридов углерода, азота, кислорода и фтора и химическими свойствами атомов с тем же числом электронов. Так, радикал СН (метин) является химическим аналогом атома Н, радикалы СНа (метилен) и NH (имин) — аналогами атома О, радикалы СН3 (метил), НН2 (аминогруппа) и ОН (гидроксил) — аналогами атома К и, наконец, молекулы СН4, N1 3, Н2О и НГ в известном смысле (инертность) аналогичны атому N6. Благодаря химической ненасыщенности радикалов энергия активации нроцессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций. Поэтому такие процессы, как правило, идут приблизительно с такой же скоростью, с какой идут атомные процессы. [c.34]

    Существуют также ионные кристаллы, у которых электронная разупорядоченность не сопряжена с ионной. Типичный представитель таких кристаллов — СиО, дающий кристаллы стехиометрического состава без заметного избытка металла или кислорода. Электронная разупорядоченность СиО обусловлена тем, что электрон из электронной оболочки двухвалентного иона меди, находящегося в узле решетки, покидает свое место и двигается в решетке как свободный электрон. В месте отрыва электрона остается положительная дырка, т. е. соблюдается равенство концентраций электронов проводимости и дырок. Но в противоположность ионным дефектам, представляющим собой локализованные нарушения, электронные дефекты обладают энергетическими уровнями, размазанными по всему кристаллу. [c.173]

    Ядро атома серы содержит 16 протонов. Из 16 электронов атома 10 находятся на внутренних слоях и образуют оболочку типа неона (конфигурация 1з 2з 2р ). Внешний слой электронной оболочки атома серы содержит 6 электронов. При взаимодействии с электроположительными элементами сера способна принимать недостающие до восьмиэлектронного слоя 2 электрона, проявляя, как и кислород, степень окисления — 2. Но благодаря большому радиусу и меньшей энергии связи внешних электронов сера (а также селен и теллур) способна отдавать электроны, проявляя степень окисления от -Ь2 до +6. [c.114]

    Известно также, что озон легко с выделением энергии диссоциирует на молекулярный и атомарный кислород атомарный кислород, имея на внешней электронной оболочке только секстет электронов, способен инициировать гомо-лиз связи С—С  [c.28]

    В соответствии с изменениями потенциалов ионизации в периодах и группах в общем происходит относительное изменение свойств элементов. Однако потенциал ионизации не может служить единственной количественной мерой относительной металличности или неметалличности элементов. Действительно, самым высоким потенциалом ионизации обладает атом гелия, но так как он относится к инертным элементам, говорить о характере его свойств довольно трудно. Далее, если рассмотреть изменение потенциала ионизации в пределах второго периода (см. рис. 8, — Не), то обнаруживаются скачки. Потенциал ионизации у кислорода оказывается меньше, чем у азота. Такие скачки, связанные с некоторыми особенностями строения внешних электронных оболочек атомов, наблюдаются и в остальных периодах, хотя неметаллические свойства нарастают. [c.65]

    Благодаря малому размеру ион водорода внедряется в электронные оболочки молекулы воды, связывается с молекулой воды очень прочной связью и изменяет угол между связями Н—О—Н, возможно, даже изменяя тип гибридизации электронных орбиталей кислорода. Ионы же щелочных металлов не могут проникать в электронные оболочки молекулы воды, связь их с молекулой воды значительно слабее, а значение угла [c.123]

    Электронные оболочки атома или иона кислорода характеризуются гораздо меньшей электронной плотностью, чем в атоме или ионе фтора, поэтому их поляризуемость значительна. [c.470]

    В силикатных расплавах есть ковалентные структуры, имеют место явления полимеризации, упорядочения, теплоты смешения. Важно и то обстоятельство, что ионы взаимно деформируют свои электронные оболочки, причем наибольшему искажению они подвергаются обычно у анионов кислорода. [c.185]

    Если возбуждение атома, приводящее к увеличению числа неспаренных электронов, связано с очень большими затратами энергии, то эти затраты не компенсируются энергией образования новых связей тогда такой процесс в целом оказывается энергетически невыгодным. Так, атомы кислорода и фтора не имеют свободных орбиталей на валентной электронной оболочке. Здесь возрастание числа неспаренных электронов (способствующих образованию наиболее прочных связей) возможно только путем перевода одного из электронов на следующий энергетический подуровень, т. е. в состояние 3 . Однако такой переход сопряжен с очень большой затратой энергии, которая не покрывается энергией, выделяющейся при возникновении новых связей. Поэтому за счет неспаренных электронов атом кислорода может образовать не больше двух ковалентных связей, а атом фтора — только одну. Действительно, для этих элементов характерна ковалентность, равная двум для кислорода и единице — для фтора. [c.124]


    В результате этого процесса молекула НС1 расщепляется таким образом, что общая пара электронов остается у атома хлора, который превращается в ион СГ, а протон, внедряясь в электронную оболочку aTo.via кислорода в молеку.ле воды, образует ион гидроксония Н3О+.  [c.235]

    Во внешней электронной оболочке атомы рассматриваемых элементов содержат шесть электронов — два на -орбитали и четыре на р-орбитали. Атом кислорода отличается от атомов других элементов подгруппы отсутствием на внешней электронной оболочке ( -подоболочки. [c.452]

    Структуры внешних электронных оболочек атомов кислорода и серы можно представить следующим образом  [c.63]

    Предсказание валентности. Если исходить из положения, что валентность атома равна числу неспаренных электронов его внешней оболочки, то атомы благородных газов не должны давать никаких соединений с другими атомами, поскольку в основном состоянии спины всех электронов спарены. Между тем открыты и исследованы соединения благородных газов с галогенами и кислородом, как Хер , ХеО 4, Хе 2 и др. Еще сложнее объяснить существование так называемых сэндвичевых соединений, например ферроцена, где атом железа связан с двумя циклическими молекулами СдН,, (рис. 17). Он должен был бы образовать связи с десятью атомами углерода, не обладая десятью электронами во внешней электронной оболочке. [c.57]

    Внешняя электронная оболочка серы отличается от таковой кислорода наличием вакантных (пустых, не занятых электронами) -орбиталей. Наличие вакантных орбиталей характерно для всех элементов, начиная с третьего периода и ниже./ Это является главной причиной отличия свойств элементов второго периода от элементов нижележащих периодов. [c.63]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Во спешней электронной оболочке атомы рассматриваемых элементов содержат шесть электронов — два на s-орбитали и четыре па -орбиталн. Атом кислорода отличается от атомон других элементов подгруппы отсутствием ui-иодуровня во внешнем электронном слое  [c.373]

    Г фиий, а также искусственно полученный элемент курчатовин (№ 104). Конфигурация электронной оболочки атомов этих элементов такая же, как у титана, — d s . Аналоги титана цирконий и гафний являются тяжелыми металлами — их плотности соответственно 6,45 и 13,31 г/см температуры их плавления также выше, чем у титана 1852 и 2225°С. Цирконий и гафний образуют разнообразные соединения, в устойчивых и наиболее характерных из которых цирконий и гафний четырехвалентны. Устойчивость соединений, в которых эти элементы трех- и двухвалентны, невелика п убывает в направлении Ti—Zr — Hf. В этом же направлении возрастает металлическая активность этих элементов. Цирконий и гафний, подобно титану, существуют в двух полиморфных видо-измеР ениях — а и р. Также подобно титану цирконий и гафпин при обычных температурах химически неактивны и коррозионноустойчивы, а при высокой температуре реагируют с кислородом, азотом н другими элементарными окислителями. [c.275]

    Два пика наблюдаются для каждой полностью занятой орбиталн, включая ls-орбиталь электронов оболочки кислорода [27]. Пики А, В. С и пики в области больших энергий связи, чем энергия пика Oi , являются пика-ми-сателл1гтами (см. ниже). [c.344]

    Первый период включает всего два элемента, второй и третий периоды — по восемь, четвертый и пятый — по восемнадцать, шестой, седьмой — по тридцать два элемента. Первые три периода называются малыми, а четвертый и с.аедующие—большими. Большие периоды подразделяются на ряды, малые же периоды совпадают с соответствующими рядами. В каждой группе элементы больших периодов подразделяются на две подгруппы — главную и побочную. Элементы малых периодов — второго и третьего — относятся к главной подгруппе. Основанием для помендеиия элементов в ту или иную группу являлась максимально возможная валентность элемента — ее значению соответствует 1юмер группы псключенпе составляют кислород, фтор, неон и элементы побочной подгруппы VIH группы, валентность которых не достигает соответственно шести, семи и восьми, а такл<е элементы побочной подгруппы I группы, валентность которых достигает трех. Номер каждого периода совпадает с числом электронных уровней в оболочках атомов, номер группы — с числом электронов па наружном уровне электронной оболочки, хотя это выполняется только для атомов элементов главных подгрупп. [c.36]

    Таким образом, число непарных электронов в атомах бериллия, бора и углерода, находящихся в возбужденном состоянии, соответствует фактической валентности этих элементов. Что же касается атомов азота, кислорода и фтора, то возбуждение их не может привести к увеличению чис.г а неиарных электронов во втором уровне их электронных оболочек. Однако у аналогов этих элементов — фосфора, серы и хлора,— поскольку на третьем уровне их [c.45]

    Условием для возникновения водородной связи является большая величина электроотрицагельности у атома, непосредственно связаного в молекуле с атомом водорода. Положительно поляризованный атом во.дорода, по существу почти лишенный электронного облака, способен, благодаря своему малому размеру, проникать в электронную оболочку отрицательно поляризованного атома (фтора, кислорода, азота). В результате этого атом водорода одной молекулы связывается неподеленной электронной парой ат(1ма электроотрицательного элемента другой молекулы. Эта связь атома водорода, входящего в одну молекулу, с атомом электроотрицательного элемента, входящего в другую молекулу, и является водородной связью. Ниже схематически показана ас-соцмация двух молекул воды посредством водородной связи  [c.64]

    Как отмечает В. И. Кузнецов [17] Даже при беглом в гляде на состав химических соединений мы убеждаемся, что атомность только в исключительных случаях, прежде всего для кислорода, водорода и фтора, неизменна. Элементарные атомы часто проявляют к положительным элементам другую атомность, чем к отрицательным . Это очень важное замечание. Оно побуждает к иному объяснению природы валентности, так как взаимодействуют не только положительный атом с отрицательным атомом. Взаимодействуют друг с другом и однознаковые атомы, что, казалось бы, ломает все предписанные им Периодической системой правила поведения . Э го кажущееся противоречие снимается, как только мы переходим к рассмотрению химической связи на электронном уровне. Решающим фактором здесь является относительная электронодонорность атомов, участвующих во взаимодействии. При взаимодействии двух однозначных атомов в каче-стие положительного будет выступать тот, электронодонорность которого вьш1е, т. е. электроны внешнего слоя (слоев) подвижнее. А это, в свою очередь, зависит от типа внешнего слоя (слоев) в структуре электронной оболочки, что и является нсриопричиной структуры системы химических элемен-юн. [c.175]

    При приближенном решении задачи большую помощь может оказать знание некоторых экспериментальных характеристик системы (атома или молекулы), на основании которых формируются предварительные представления об ее электронной структуре. Например, парамагнетизм молекулярного кислорода 0 указьтает на существование в основном состоянии спинового магнитного момента, а следовательно, и на не-замкнутость электронной оболочки. В этом последнем утверждении предполагается наличие некоторых предварительных, а возможно, и интуитивных представлений об электронной структуре молекулы, [c.73]

    Такие понятия, как конфигурация и терм, являются характеристиками электронного строения молекулы, они неприменимы в строгом смысле к описанию состояния отдельных атомов в составе молекулы. Тем не менее с использованием соображений симметрии удается для некоторых молекул установить примерное строение электронной оболочки атома в составе молекулы. Хорошо известным примером в этом отношении может служить молекула метана, в которой, как это впервые показал Л. Полинг, эффективная конфигурация атома углерода есть Этот вопрос обсуждается, как правило, в литературе весьма подробно, см. [17], [8], [12], [20]. Рассмотрим подобную задачу на примере более сложной системы — комплекса №Уг, где в качестве У может быть взят атом кислорода. Симметрия комплекса предполагается Сзу Атомы переходных элементов имеют малую энергию возбуждения. Для атома N1 (см. гл. 3, 6) разность полных энергий АЕ = Е Зс 4х) — ( F, 3 4х ) составляет всего лишь 205 см" = 0,03 зВ. При столь незначительной величине АЕ орбитальные энергии 4s и Зй -злект-ронов претерпевают тем не менее существенные изменения. Например, для основного в конфигурации с F-тepмa = -0,70693, 45 = = -0,27624, в то время как для терма -0,45730 и = -0,23576. [c.218]

    Так как энергия связи О—О в пероксиде водорода невелика (126 кДж/моль), можно предположить, что реакция пероксида водорода с азобензолом начинается с гомолиза этой связи с образованием радикалов НО, последующее соударение которых может привести как к образованию исходной молекулы Н2О2, так и к генерированию атомарного кислорода, который дополняет свою внешнюю электронную оболочку до октета за счет неподеленной пары электронов одного из атомов азота азогруппы  [c.416]

    Образование водородной связи обязано ничтожно малому размеру положительно поляризованного атома водорода и его способности глубоко внедряться в электронную оболочку соседнего (ковалентно с ним не связанного) отрицательно поляризованного атома. Вследствие этого наряду с электростатическим взаимодействием в возникновении водородной связи существенную роль играет и донорно-акцепторное взаимодействие. Так, молекула воды может образовать четыре водородные связи — за счет двух атомов водорода и двух несвязывающих электронных пар атома кислорода  [c.108]

    ОН-. Вследствие прочной и устойчивой электронной оболочки, а также соответствующего строения электронных орбиталей эти ионы не имеют склонности к образованию ковалентных связей с катионами. Рассматривая реакционную способность воды как донора пары электронов, можно отметить, что, например, при гидратации катионов, кислород молекулы воды как раз является жестким центром. Относительно высокая электроотрицательность атомов азота — причина того, что азотные основания (ННз, ЫгН4 и их замещенные производные) являются жесткими основаниями. Анионы кислородсодержащих кислот, таких, как СЮ4-, 504 ", Р04 ", СОз , также имеют малодеформируемую структуру. [c.396]

    Атомы элементов главной подгруппы IV группы содержат во внешней электронной оболочке четыре электрона. Тенденция к отдаче электронов у свободных атомов углерода и его аналогов ныражена слабее, чем у соседей слева по периоду, а тенденция к приему электронов — слабее, чем у соседей справа. Вместе с тем обе эти тенденции выражены приблизительно в равной степени. Поэтому, если можно говорить о том, что атомам галогенов, кислорода или азота присущи электроотрицательные свойства, а атоллам щелочных и щелочноземельных ме- [c.92]

    В свободном атоме кислорода электронная конфигурация 2-го от ядра слоя такова 25 , 2рг , 2р/, 2рх при этом плотность заряда 25 пары электронов распределена по сфере около внутренней электронной оболочки, а плотность заряда 2рг , 2ру, 2р электронов распределяется симметрично около взаимно перпендикулярных осей X, у, г. При связывании двух атомов водорода 2ру-, 2рж-орбн-талями угол 90° увеличивается вследствие электростатического отталкивания, и это возмущение приводит к увеличению гибридизации, Валентный угол, соответствующий минимуму потенциальной энергии молекулы, при участии х-электронов в валентном состоянии, проходящий через максимальную электронную плотность, уве- [c.8]

    Известно два соединения [(ЫНз)5Со02Со(К Нз)б](НОз)4 и [(NHз)5 o02 o(NHз)5](NOз)5, из которых первое неустойчиво, а второе стабильно, хотя в соответствии с формулой должно содержать кобальт в необычном для него состоянии окисления. Для объяснения устойчивости второго соединения было проведено измерение его магнитной восприимчивости. Оказалось, что осуществляется следующее строение электронных оболочек центральных ионов кобальта из девяти 1-, 8-, /)-ячеек каждого атома Со две заняты спаренными электронами Со, пять — акцепторными связями с МНз. У двух атомов Со остаются четыре ячейки с четырьмя электронами и группа О с тремя электронами, участвующими в образовании валентных связей (один неспаренный валентный электрон и пара электронов у отрицательно заряженного атома кислорода). Неспаренный электрон может дать одну ковалентную связь с одним из электронов кобальта, а электронная пара — донорную связь со свободной орбитой Со. В результате семь электронов двигаются в поле четырех центров, причем у двух из этих центров (у кобальта) имеются по две орбиты. [c.345]

    Для молекул воды характерно образование так называемых водородных связей. Возникновение водородной связи объясняется свойством атома водорода взаимодействовать с сильно электроотрицательным элементом, например с кислородом другой молекулы воды. Такая особенность водородного атома обусловливается тем, что, отдавая свой единственный электрон на образование ковалентной связи с кислородом, он остается в виде ядра очень малою размера, почти лишенного электронной оболочки. Поэтому он не испытывает отталкивания от электронной оболочки кислорода другой молекулы воды, а, наоборот, притягивается ею и может вступипъ с нею во взаимодействие. Наибольшей устойчивостью обладают удвоенные молекулы (НаО)2, образование которых сопровождается возникновением двух водородных связен  [c.10]

    Кислороц. На внешней электронной оболочке атома кислорода находятся два неспаренных электрона и две неподеленные электронные пары, поэтому ковалентность кислорода может быть равной двум (в молекуле Н2О), трем (в молекулах СО, Оз). Атом кислорода по электроотрицательности уступает только фтору. Фтор не имеет вакантных орбиталей на валентной оболочке, чтобы присоединить все валентные электронные пары кислорода. Поэтому выше трех ковалентность кислороду не свойственна. [c.122]

    В отличие от з-элементов 1А- и ПА-подгрупп отдельные р-элементы, водород и гелий встречаются в природе в виде простых веществ. К щироко распространенным относятся кислород, кремний, алюминий и водород. Обобщенные электронные конфигурации внещних и предвнещних электронных оболочек атомов р-элементов представлены в табл. 15.1. [c.394]

    В состав этой подгруппы — подгрз ппы марганца, входят элементы марганец, искусственно полученный технеций, рений и искусственно полученный борий. Отношение между ними и элементами главной подгруппы седьмой группы — галогенами — приблизительно такое же, как и между элементами главной и побочной подгрупп шестой группы. Имея на внешней электронной оболочке атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако высшие кислородные соединения этих элементов до некоторой степени сходны с соответствующими соединениями галогенов, так как в образовании связей с кислородом у них, как и у галогенов, могут участвовать семь электронов. Поэтому их высшая степень окисления равна - -1. [c.518]

    Структурные формулы в основном возникли в органической химии и хорошо описывают органические молекулы. Для неорганических молекул штрих хуже передает многообразие атомного взаимодействия. В молекуле СО существует так назьшаемая семиполярная связь. Атом кислорода передает электрон углероду, после чего электронные оболочки обоих атомов делаются подобными электронным оболочкам азота. Поэтому Л. Полинг описывает окись углерода формулой С = О . Связь в молекуле Не трактуется как трехэлектронная, возникающая в результате обмена места электрона иона гелия с электронной парой гелия. Высказывалось предположение, что подобная связь имеется и в О2. [c.484]

    Однако, при всех аналогиях, кислород- и серусодержаище соединения во многом различаются и по структурам, и по свойствам. Это связано как с различием в электроотрицательности СЭО О 3,5 30 8 2,6), так и с разницей в строении внешних электронных оболочек кислорода и сфы. Вследствие этого, в отличие от кислорода, сера может гфояв-лять валентность два, три, четыре и шесть. [c.167]


Смотреть страницы где упоминается термин Кислород электронная оболочка: [c.344]    [c.346]    [c.45]    [c.108]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Электронная оболочка



© 2025 chem21.info Реклама на сайте