Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Как можно изучать органическую химию

    КАК МОЖНО ИЗУЧАТЬ ОРГАНИЧЕСКУЮ ХИМИЮ [c.158]

    В этой книге мы использовали графические представления молекулярных орбиталей для выяснения механизмов органических реакций. Мы попытались показать, что для описания основных превращений органических соединений вполне можно использовать орбитальную теорию на уровне контурных диаграмм. До настоящего времени объяснение такого подхода ограничивалось лишь реакциями, контролируемыми орбитальной симметрией и подчиняющимися правилам Вудварда-Гофмана. В настоящей книге показано, что контурные диаграммы молекулярных орбиталей можно широко использовать взамен изогнутых стрелок и резонансных гибридов . Во многих случаях использование контурных диаграмм имеет значительные преимущества по сравнению с теорией резонанса и дает более глубокое и более ясное представление о механизме реакции. Книга предназначена для учащихся, которые изучали органическую химию по крайней мере в течение одного года, но авторы надеются, что и для практически работающих химиков-органиков эта книга в целом окажется и интересной, и полезной. [c.7]


    В качестве примера можно привести обобщение сведений о химических реакциях (см. схемы 7 и 8, с. 86 и 87). Основная цель заданий 5 и 6 на с. 81 — помочь вам провести сравнительный анализ изученных ранее типов химических реакций и получить обобщенные знания о них. Учебный материал о реакциях разложения, соединения, замещения, обмена, окислительно-восстановительных процессах, реакциях, протекающих по радикальному и ионному механизму и т. д., вы изучали в курсах неорганической и органической химии. При этом вы, может быть, и не задумались над тем, происходит ли процесс окисления-восстановления в конкретной реакции соединения или разложения, т. е. характерна ли данная реакция только для неорганических веществ или является общей как для неорганических, так и для органических веществ. Чтобы ответить на эти и другие вопросы, следует сравнить большое число конкретных химических явлений и выяснить, что в них общее и чем они отличаются друг ОТ друга, в результате такого сравнительного анализа вы и сможете обобщить знания о них. [c.3]

    Наука о катализе по сравнению со своими старшими сестрами —физикой и химией—является молодой, но ее достижения настолько велики, что промышленность органического синтеза перестраивает многие процессы на каталитические, как конструктивно более простые и экономически выгодные. Такие проблемы, как синтез полимеров, получение и переработка жидкого моторного топлива, методы использования природных газов, синтезы на базе окислов углерода, олефинов и ацетилена, алкилирование, изомеризация и многие другие, могли быть разрешены только при помощи катализа. В присутствии различных катализаторов были открыты и изучены многочисленные реакции, недоступные для методов классической органической химии и казавшиеся в свое время даже невероятными. Без преувеличения можно сказать, что будущее органической химии и органической промышленности во многом зависит от развития катализа. [c.10]

    Однако в конце XIX столетия уже нельзя было рассчитывать на длительное существование такой точки зрения. К этому времени стали хорошо известны и подробно изучены многочисленные классы органических кислородсодержащих соединений, образование которых можно представить себе как результат взаимодействия углеводородной молекулы с кислородом, происходящего без распада углеродного скелета. Не только тогда, но даже и в наши дни, в середине XX столетия, в любом руководстве по органической химии такие соединения, как перекиси, спирты, альдегиды, кетоны, кислоты и др.,— все производятся из соответствующих углеводородов либо внедрением в последние (между углеродными и водородными атомами) молекулярного или атомного кислорода, либо таким же внедрением кислорода с последующим выделением воды. Следует подчеркнуть, что подобное образование кислородсодержащих органических соединений вовсе не носит только символический характер синтез этих соединений в ряде случаев действительно является осуществлением последовательного воздействия кислорода на углеводородную молекулу без распада ее углеродного скелета. Это воздействие, правда, осуществляется в экспериментальных условиях, отличных от условий пламенного сгорания. Большею частью оно производится в жидкой фазе кислородом в момент выделения. Однако самый факт его осуществимости подтверждал возможность воздействия кислорода на углеводородную молекулу в газовых реакциях без разрыва углеродного скелета. [c.6]


    Издавна принято, что основам общей химии студент обучается в первом семестре при прохождении курса неорганической химии. При этом часто расходятся во мнении, что же считать относящимся к области общей химии. В настоящее время вместо курса общей химии принято давать студентам как можно раньше введение в физическую химию как прочный фундамент для дальнейшего обучения. Лучше всего это осуществлять в тесном взаимодействии с физикохимиками. В результате такой совместной работы и возникла эта книга. При обучении следует больше уделять внимания взаимному перекрыванию областей неорганической и физической химии. В случае органической химии это не так актуально, поскольку она изучается значительно позднее, когда основы физической химии студентами уже усвоены. В связи с этим совершенно ясно, что книга для практических занятий по неорганической химии не должна быть узкоспециальной и в нее следует включать гораздо более широкий круг вопросов. [c.8]

    В данной главе мы кратко ознакомимся с элементарными основами органической химии. В рамках настоящего курса мы имеем возможность дать лишь общее представление о том, насколько обширна эта тема. По существующим оценкам в настоящее время известно более миллиона органических соединений. Ежегодно химики открывают в природе или синтезируют в лабораториях тысячи новых органических веществ. Это может привести к мысли, что изучение органической химии представляет собой безнадежно трудную задачу. Однако на самом деле все органические вещества содержат те или иные функциональные группы - определенным образом расположенные атомы или группы атомов. Эти группировки атомов обусловливают определенные химические свойства, в той или иной мере присущие всем соединениям с одинаковыми функциональными группами. Таким образом, изучив характерные химические свойства различных функциональных групп, можно понять химические свойства многих органических веществ. [c.407]

    Легкость расчетов по методу Хюккеля привела к тому, что внедрение языка и понятий квантовой теории в органическую химию в основном велось на основе изучения свойств я-сопряженных молекул. Вероятно, и в настоящее время теория сопряженных соединений является наиболее разработанной областью квантовой химии. В данной главе ставится цель объяснить, как и в какой мере с помощью расчетов можно изучать и прогнозировать свойства 7г-сопряженных систем. Будем использовать, как правило, метод МОХ, так как его применение не требует ЭВМ и вполне оказывается достаточным иметь микрокалькулятор. Метод МОХ позволяет осуществить расчеты в полной мере и пояснить принципы, на которых основаны и расчеты более сложными методами ССП МО. [c.255]

    Строение можно изучать химическими методами — второе важнейшее положение Бутлерова — также не потеряло своего значения в наши дни. Изучение строения органических соединений — природных и синтетических — было и остается основной задачей органической химии. При этом, как и во времена А. М. Бутлерова, мы пользуемся методами химического анализа и синтеза. Однако наряду с ними в наше время широко применяются физические методы определения строения — разные виды спектроскопии, ядерный магнитный резонанс, масс-спектрометрия, определение дипольных моментов, рентгенография, электронография. Значение этих методов ныне столь велико, что, дополняя Бутлерова, в наше время мы можем сказать строение можно изучать химическими и физическими методами. [c.31]

    Химическое строение — порядок химической связи атомов — свойство реальной молекулы структурные формулы лишь с большим или меньшим приближением передают его. Химическое строение можно установить, изучая реакции образования вещества и его химические превращения. В то же время современная физика дает в руки исследователя методы, позволяющие судить о реальном геометрическом строении молекулы определенное таким образом строение совпадает с выведенным из химических данных. Все развитие органической химии за сто лет после Бутлерова не отменило так понимаемой теории строения, а привело лишь к ее развитию и укреплению. [c.33]

    Строение можно изучить химическими методами. Изучение строения органических соединений — природных и синтетических — было и остается основной задачей органической химии. При этом, как и во времена Бутлерова, пользуются методами химического анализа и синтеза. Однако наряду с ними теперь широко применяются физические методы определения строения. Значение этих методов столь велико, что можно сказать строение органических соединений изучают химическими и физическими методами. [c.222]

    Образование ковалентных связей происходит при протекании химических реакций, обратных только что описанным. Хотя органическая химия изучает превращения, которые включают более сложные процессы, огромное множество реакций можно объяснить с использованием этих простых перемещений электронов. При графическом изображении механизмов реакций удобно-пользоваться символическими обозначениями, показывающими направление движения электронов. В настоящей книге применяются только два таких символа — это изогнутые стрелки [c.28]


    Химию, изучаемую в средней общеобразовательной школе и в средних специальных учебных заведениях, можно разделить на три большие части общую, неорганическую и органическую химию. Общая химия рассматривает основные закономерности, относящиеся ко всем химическим превращениям. Неорганическая химия изучает свойства и превращения неорганических (минеральных) веществ. Органическая химия изучает свойства и превращения органических веществ. [c.4]

    Существует два основных направления в органической химии. Одно из них сводится к изучению природных объектов, таких, как растения, о которых известно, что они обладают специфическими свойствами, например, тропические растения, издавна применяемые местными жителями при лечении малярии. Изучая их, химик готовит различные экстракты, пользуясь в качестве растворителя спиртом или эфиром, и, прибегая к разнообразным методам разделения, получает из таких экстрактов несколько фракций. После каждого фракционирования производят определение, содержит ли фракция активное противомалярийное вещество. Этот процесс можно продолжать до тех пор, пока не будет получено чистое активное вещество в кристаллической форме. Химик затем анализирует это вещество — определяет его молекулярный вес, устанавливает, какие атомы входят в состав молекулы этого вещества. Затем он изучает химические свойства полученного вещества, разделяя его на более мелкие молекулы известных веществ, чтобы установить его молекулярную структуру. После определения структуры химик пытается синтезировать это вещество, и если это удается, то активное вещество становится доступным в больших количествах и по низкой цене. [c.355]

    Овладеть микрометодами органической химии важно прежде всего при исследовании природных соединений. Следует отметить, что в настоящее время уже изучены практически все природные соединения, выделение, анализ и определение строения которых можно осуществить классическими методами. Поэтому дальнейшие исследования направлены в первую очередь на те соединения, которые присутствуют в изучаемых объектах лишь в небольших или даже в следовых количествах. [c.692]

    Масс-спектрометрия является инструментальным методом изучения органических соединений. С помощью этого метода устанавливают молекулярную массу органического вещества и строение его молекул, определяют его элементный состав. Как аналитический метод масс-спектрометрия обладает исключительно высокой чувствительностью и позволяет обнаруживать следовые количества органического вещества в больших объемах газов и жидкостей, а также в биологических системах. С помощью масс-спектрометрии можно изучать превращения вещества в процессе химической реакции, что существенно для установления механизмов реакций. Этот метод может использоваться и для изучения микроструктуры макромолекул, определения состава и структуры поверхностей полимерных материалов. В настоящее время масс-спектрометрия эффективно применяется в различных областях науки и техники, например в органической и элементоорганической химии, химии природных соединений, аналитической и физической химии, нефтехимии, биохимии, фармакологии, экологии. [c.3]

    Поскольку в структуре алмаза все связи между атомами углерода одинаковы, их образование можно рассматривать исходя из представления об 5р -гибридизации, характеризующейся тетраэдрической симметрией (объемная структура). (Типы гибридизации подробно изучаются в курсе органической химии.) Структуру же графита с углами между связями в одном слое 120° (плоская структура) можно рассматривать как следствие хр -гибридизации. Естественно поэтому предположить, что должна сз ществовать третья форма углерода, отвечающая 5р-гибридизации (линейная структура), состоящая из длинных полимерных молекул, например (—С = С—)х- [c.155]

    Вторую наиболее интересную и интенсивно изучаемую группу методов составляют процессы, базирующиеся на реакциях внутримолекулярных циклизаций с затрагиванием атомов фтора бензольного кольца и кратной связи перфторолефинов под действием гетеро-нуклеофилов и процессах конденсации нескольких молекул, имеющих подходящие функциональные группы [35]. Заметим, что если конструирование гетероциклических систем конденсацией давно известно и достаточно хорощо изучено в органической химии, а введение атомов фтора лишь сказывается на количественной стороне и не является исключением, то применение реакций внутримолекулярной циклизации характерно именно для полифторированных ненасыщенных соединений. Этот метод стал заметным новым способом синтетической органической химии, используемым для получения разнообразных гетероциклических соединений. В данном случае используют бидентатные нуклеофильные реагенты. В книге представлен материал, отражающий лишь небольшую часть тех возможностей, которые заложены в синтетическом потенциале главных "строительных" блоков — пер-фторолефинах, и можно надеяться, что со временем этот потенциал будет раскрыт и реализован в большем объеме. [c.8]

    Уровень 5. Тема Теория электролитической диссоциации , помимо мировоззренческого значения (иллюстрация единства противоположных процессов — диссоциации и моляризации), вносит много нового в объяснение механизма реакции. На базе понятия об обратимости реакций можно объяснить сущность процесса диссоциации, а также гидролиза солей. Гидролиз рассматривается только в ионной форме, чтобы не вводить понятие о гидроксосолях. Гидролиз — очень важное теоретическое понятие, которое развивается в последующих темах и в органической химии. Его следует изучать с использованием понятия о химическом равновесии. [c.278]

    В первую очередь следовало изучить некоторые реакции кинетически. Наш опыт изучения замещения в органической химии позволял предположить, что это даст возможность определенным образом классифицировать реакции хотя тот же самый опыт предостерегает, что кинетические исследования должны быть достаточно широкими, например включать поведение при различного типа конкуренции, прежде чем можно будет утверждать, что они являются ясными доказательствами механизма. [c.110]

    Изучая реакции определенного типа, в которых в реагирующие молекулы вводятся различные заместители, можно получить значительные сведения о механизме реакции. Например, можно исследовать кинетику гидролиза метилбензоата, в котором в орто-, мета- и пара-положениях находятся различные атомы или группы, такие, как С1, СНз, N0. . Изучение влияния этих заместителей на скорость, предэкспоненциальный множитель и энергию активации способствует более глубокому пониманию молекулярного механизма. Эта проблема составляет предмет физической органической химии и в данной работе рассматривается в основном с кинетических позиций. Заместители оказывают влияние на скорость химических реакций частично за счет изменения в молекуле электронной плотности. Определенному типу реакции благоприятствует увеличение электронной плотности у реакционного центра. В этих случаях скорость реакции возрастает обычно за счет уменьшения энергии активации. Примером может служить реакция пиридина с иодистым метилом [c.250]

    В неорганической химии, хотя и было также довольно много неясного в вопросе о двойственной реакционной способности, развитие представлений в этой области шло, в основном по принципу раздвоения свойств единого целого, т. е. одного химического индивида. При этом данное явление изучалось как на сложных веществах, так и на химических элементах [И]. Поскольку возникновение первых представлений о двойственной реакционной способности в неорганической химии значительно опережало возникновение этих же представлений в органической химии, их по праву можно считать наиболее ранними. [c.217]

    Несмотря на бесспорную важность органической химии для физических, биологических и медицинских наук, пока еще было сделано мало попыток обобщения термодинамики органических веществ, а это имеет основополагающее значение как для чисто теоретических, так и для прикладных наук. В то же время термодинамика неорганических веществ довольно хорошо разработана с точки зрения химиков, физиков, занимающихся проблемами твердого состояния, металлургов, керамиков и инженеров. Поскольку развитие науки и техники во все возрастающей степени зависит от знания основных свойств веществ, то отсутствие систематической и всесторонней разработки термодинамики органических кристаллов, несомненно, затрудняет дальнейшее развитие во многих областях. Нетрудно представить, каких больших успехов можно было бы достичь в технике, если бы твердое состояние органических веществ было так же хорошо изучено, как неорганических ,  [c.9]

    Наконец, мы видим, что химические превращения одного какого-либо органического вещества приводят к образованию других органических веществ. Таким образом, изучая химические свойства одного класса соединений, мы тем самым познаем пути образования других классов соединений. Отсюда мы можем сделать практический вывод, относящийся к дальнейшему изучению органической химии изучив характерные реакции, связанные с функциональной группой данного класса соединений, следует затем установить, каким образом функциональная группа может быть введена в молекулу и к каким новым, другим соединениям можно притти, изменяя эту функциональную группу. [c.101]

    Значение гомологических рядов в органической химии заключается в том, что, изучив химические свойства первых членов гомологического ряда, можно судить о химических свойствах всех остальных. Это очень облегчает изучение органической химии. [c.60]

    Углеводороды, как показывает само название,— вещества, состоящие из углерода и водорода. Их состав обозначают общей формулой С Нд. Класс углеводородов всегда изучается в начале курса органической химии. Это объясняется не только тем, что углеводороды имеют очень простой состав — состоят только из двух элементов главная причина заключается в том, что углеводороды являются как бы родоначальниками всех других классов органических соединений. Заменяя в молекулах углеводородов атомы водорода на различные атомы или группы атомов, можно получить другие классы органических соединений галогенопроизводные, спирты и т. д. [c.69]

    В этой главе в общих чертах рассматривается реакционная способность ароматических гетероциклических соединений. Помимо классических реакций замещения, значительное внимание также уделено реакциям радикального замещения, металлирования и реакциям, катализируемым соединениями палладия, которые приобретают в последнее время все большее значение в химии гетероциклических соединений. Для того чтобы подчеркнуть важность этих методов именно для синтеза и превращений гетерощ1клических соединений, в данной главе им посвящены отдельные разделы, поскольку в учебниках по общей органической химии такие процессы обсуждаются крайне скудно. Более детальное обсуждение общей реакционной способности гетероциклических соединений каждого конкретного класса приводится в кратких обобщающих главах (гл. 4, 7, 10, 12, 16 и 20), а детальное рассмотрение реакционной способности с привлечением большего числа примеров конкретных реакций можно найти в главах типа гл. 5 Пиридин реакции и методы синтеза . Тем, кто уже продолжает изучение химии гетероциклических соединений, рекомендуется изучить эту главу до перехода к последующим главам, а краткие обобщающие главы, аналогичные гл. 4 Общая характеристика реакционной способности пиридинов, хинолинов и изохиноли-нов , следует прочесть перед изучением более детального обсуждения свойств каждого из классов гетероциклических соединений. [c.33]

    Вместе с применением к органическим соединениям методов физической химии шел и обратный процесс органическая химия стала способствовать развитию и становлению физической химии. Это произошло потому, что органическая химия представляла тот материал, на котором только и возможно было выяснить некоторые существенные физико-химические закономерности. Таков, например, первоначальный этап истории химической кинетики, когда изучение скоростей химических процессов можно было осуществить лишь на объектах органической химии. Такое же положение было при изучении фазовых превращений в растворов. Вот, например, что писал Рауль (1900) ученые, которые до меня изучали связь между концентрациями растворов и упругостью пара растворителя над ними, все проводили свои исследования с водными растворами солей. Это [c.107]

    У Крама и Хэммонда основной скелет учебника — реакции, их систематика и механизм, образование и разрыв химических связей, в особенности связей с углеродом, а собственно систематический материал органической химии — соединения, их родственные связи и т.д. — сообщается попутно и поэтому эпизодичен. Лишь некоторые большие группы соединений сконцентрированы в шести специальных главах (22—27). Это гетероциклы (в весьма лаконичном, чтобы не сказать поверхностном, изложении), углеводы и фенольные соединения растительного происхождения, аминокислоты, пептиды и алкалоиды, липиды, терпены и стероиды, полимеры, углеводороды нефти. Как видно, эти главы, посвященные отдельным группам соединений, носят выборочный характер и объединяют иногда непривычно разнородный материал — аминокислоты и пептиды с алкалоидами, углеводы с фенольными продуктами и т. д., используя те или другие линии логической связи разных групп веществ, которые всегда можно найти в органической химии — в первом случае, например, биогенез алкалоидов из аминокислот. Главы эти не могут содержать сколько-нибудь систематического материала, имея более чем скромный размер, однако в них приводятся очень свежий и интересный материал, причем сосредоточивается внимание в большей степени на новом и отбрасывается старое. Так, в разделе об алкалоидах подробно рассмотрено исследование строения хинина и цинхонина и дан исключительно громоздкий синтез резерпина, и, в сущности, этим исчерпывается раздел. В гл. 23 среди прочего материа.да о веществах, родственных сахарал , приводятся структуры стрептомицина, тетрациклина, левомицетина, но бегло и без доказательств. Хотя и эти главы (22—27) читаются с интересом, их роль чисто иллюстративная и весь центр книги сосредоточен на предыдущих главах, после необходимого фундамента (гл. 1—8) посвященных реакциям. Поскольку такое изложение ново, оно интересно отнюдь не только для начинающего изучать органическую химию. Книгу с интересом прочтет и взрослый химик. Этот интерес усугубляется тем, что подбор реакций очень свежий и здесь нашли место многие новые реакции крупного значения. Особенно важно то, что воедино систематически собраны по признаку механизма реакции, которые в обычном изложении оказываются резбросанными по курсу. Механизму реакций уделяется то пристальное внимание, которое характерно для нынешнего этапа развития органической химии. В связи с этим и стереох1Шии течения реакций уделяется большое место. Таким образом, этот раздел книги представляет собой наибольшую ценность независимо от того, действительно ли такое построение с педагогической стороны наиболее целесообразно. Сомнение в этом закрадывается на том основании, что нри таком изложении физиономия химического индивидуума расплывается и [c.5]

    Соединения углерода изучаются в курсе органической химии. Только немногие из них считают неорганическими веществами. Такое разделение условно и опирается больше на традиции, чем на особенности строения и свойства соединений. Есть довольно много веществ, которые можно отнести как к органическим, так и неор-< ганическим S2, ССЦ, H N, 2N2 и др. [c.351]

    С первых дней развития органической химии реакция ннтрованш имела очень большое значение. Эта реакция важна для введения ами ногруппы в ароматическое кольцо, поскольку нитрогруппу можно легк( восстановить до аминогруппы. Как показано в разд. 7.2.1, аминогрупп в свою очередь открывает путь ко многим другим важным функциональ ным группам. Механизм реакции изучался в ранних работах в связ) с проблемой ориентирующего влияния заместителей. [c.228]

    Фотохимические реакции в начале нашего века научали итальянские ученые. Недавно вновь был проявлен интерес к этой проблеме со стороны таких исследователей, как Бартон, Бьюхи, Шенк, Шёнберг и другие. За все эти годы фотохимические реакции изучались почти исключительно физико-химиками, работающими в области органической химии. Фотохимические реакции настолько сложны, в особенности реакции в газовой фазе, что, несмотря на многочисленные работы, детали превращений остаются не ясными. Так, в недавно опубликованном обзоре [95] о фотолизе кетонов упоминаются 50 исследований, посвященных фотораспаду ацетона, причем выяснены продукты распада, но не установлено надежно, каким путем они образовались [207]. Все же успех в этой области несомненен. С появлением мгновенного фотолиза [41] можно ожидать еще более ускоренного развития этой области химии. Однако к результатам многочисленных фотохимических опытов многих химнков-орга-ников следует отнестись критически. Во-первых, во многих случаях не были поставлены контрольные опыты и в действительности реакции инициировались не облучением. Во-вторых, возможное присутствие следов кислот или перекисей в реакционной смеси могло сделать опыты с облучением невоспроизводимыми. Эти обстоятельства должны быть учтены при изучении литературы. [c.369]

    К настоящему моменту студент уже изучил некоторые разделы органической химии и не запутается среди уже известных органических соединений. Теперь его можно познакомить с тем, как интерпретировать информацию, которую получают с помощью этих современных приборов. Наиболее важными приборами для хнмика-органика при определении молекулярной структуры являются спектрометры, с помощью которых измеряют спектры. Из различных типов спектрчв мы пока будем использовать только два инфракрасные спектры (ИК-спектры) и спектры ядерного магнитного резонанса (ЯМР-спектры), поскольку в настоящее время именно они наиболее широко используются в лаборатории органической химии из этих двух методов больше внимания будет уделено ЯМР-спектрам. Будет дано также представление и о других видах спектров масс-спектрах, ультрафиолетовых спектрах (УФ-спектры) и спектрах электронного парамагнитного резонанса (ЭПР-спектры). [c.395]

    Аминопир ими дины имеют большое значение в органической химии и находят широкое практическое применение, поэтому методы их синтеза и свойства изучены более полно по сравнению с другими классами гетероциклических соединений. 2-Аминопиримидины можно синтезировать по схеме  [c.126]

    В рамках органической химии диамагнитная анизотропия ка-, жется удобным критерием для установления наличия ароматичности. Однако метод трудно использовать было изучено только небольшое число молекул, главным образом моноциклических н по-лициклическнх бензоидных систем. Чтобы преодолеть многие из экспериментальных трудностей, можно определять общую диамагнитную восприимчивость, которая для ароматической системы долл<на быть выше, чем для аналогичной модельной системы, в которой отсутствует делокализация электронов. Однако такой подход осложняется тем, что необходимо подыскать такую модельную систему, в которой бы отсутствовал кольцевой ток, но для которой мол<но было бы определить экспериментально или рассчитать общую диамагнитную восприимчивость. Доступность более надежных величин для паскалевских констант восприимчивости отдельных компонентов позволила более точно оценить восприимчивость модельных систем метод был возрол<ден Даубеном с сотр. [32]. [c.295]

    В гл. 2 рассмотрена реакционная способность, в целом класса гетероциклических соединений. Разделы этой главы можно читать при изучении реакций электрофильного замещения, скажем, в тиофене в то же время гл. 2 можно изучать всю сразу, не откладывая там подробно обсуждаются радикальные реакции замещения, реакции металлирования и реакции, катализируемые палладием. Роль этих поцессов в химии гетероциклических соединений существенно возросла с момента опубликования третьего издания. Следует также отметить, что в учебниках по общей органической химии таким процесса уделено относительно мало внимания. [c.11]

    Наша эпоха поражает стремительностью роста научных и технических достижений. На протяжении жизни одного поколения человечество совершило гигантский скачок — от первых планетарных моделей атома до атомных электростанций и ледоколов, от дерзновенных расчетов Циолковского до полетов советских космонавтов. Развитие химической теории, и в частности развитие наших знаний о природе химической связи и закономерностях химических реакций, также отражает этот бурный прогресс науки. Еще 25—30 лет назад можно было слышать утверждения, что электронные обозначения при атомах и связях в химических формулах не стоят даже тех чернил, которые затрачены на их написание . Позднее скептики несколько изменили свое отношение к электронной теории в органической химии, иронически называя ее теорией, которая может все объяснить, но ничего не может предсказать . Теперь эти иронические высказывания уже забыты, электронные представления в органической химии завоевали всеобш.ее признание, их изучают и ими пользуются в повседневной практике. И хотя эта теория еще не совершила своего прыжка в космос , хотя еще не созданы те кибернетические способы управления химическими реакциями, о которых полушутя-полусерьезно пишет в своем предисловии к французскому изданию этой книги проф. Дюфресс, никто уже не сомневается в ее возможностях и Б ее будущем. Хорошей иллюстрацией этого может служить сам факт издания этой книги как первого тома многотомного французского издания, предназначенного быть практическим руководством для химиков-синтетиков. [c.5]

    За последние несколько лет система преподавания химии в американских колледжах и университетах подвергалась коренной перестройке. Специалисты пришли к выводу о необходимости принципиальных изменений. Предметы были разделены на две отдельные группы — вертикальные , например неорганическая и органическая химия, и горизонтальные , например химическая динамика. Пятнадцать лет назад основной курс химического анализа повсеместно изучался на 3-ем и 4-ом семестрах. Этот курс был профилирующей дисциплиной студентов-химиков (углубленное представление о предмете можно было получить на следующих семестрах), а также одной из профилирующих дисциплин для студентов других специальностей, например биологов (которые ее терпеть не могли ). К 1970 г. этот вводный курс был, по существу, исключен из программ 3-го и 4-го семестров. Требования, предъявляемые современной системой образования, заставили ввести новый предмет на мервом семестре — вводный курс по аналитической химии. Такое резкое изменение учебной программы потребовало новых учебников, а их не было. Современная аналитическая химия профессора Пиккеринга является удачной попыткой заполнить этот пробел. Книга представляет собой сжатый лекционный курс, рассчитанный на студентов двухгодичных и четырехгодичных колледжей и университетов. Однако предмет изложен на достаточно высоком уровне с очевидным акцентом на основные принципы методов. Это хорошо защищает студентов от опасной тенденции воспринимать химию как сборник рецептов . Пиккеринг, в ногу со временем, концентрирует внимание на аналитических методах, основанных на взаимодействии между материей и энергией (инструментальный анализ). Среди аналитических методов, основанных на взаимодействии между материей и материей (химический анализ), наибольшим вниманием автора пользуются методы, которые сохраняют свое значение (например, титриметрия). В целом Пиккеринг написал замечательную и небольшую по объему книгу, в которой ему удалось (причем не поверхностно) охватить разнообразные методы термические методы радиохимический анализ эмиссионные методы и методы, основанные на атомной и молекулярной абсорбции спектроскопию комбинационного рассеяния микроволновую спектроскопию ЯМР- и ЭПР-спект-роскопию масс-спектрометрию измерение дисперсии оптической актив- [c.14]

    Классическая работа Термодинамика и свободная энергия веществ , написанная в 1923 г. Льюисом и Ренделлом, по существу является первой полной математической формулировкой химической термодинамики. Поколения студентов изучали эту интересную книгу и убеждались в полезности приведенных там соотношений для решения технических проблем. Одной из двух значительных работ, опубликованных после 1923 г,, было экспериментальное подтверждение третьего закона, выполненное Джиоком и его учениками. Другим исследованием явилась разработка методов статистической механики для расчета термодинамических свойств идеального газа на основании первого и второго законов термодинамики. Сейчас нет никаких сомнений в том, что величины свободных энергий, полученные из термических данных и статистических методов расчета, можно с уверенностью использовать для предсказания состояния равновесия в системах. Тем не менее широкое применение термодинамики в органической химии до настоящего времени тормозилось двумя факторами. Использование неточных литературных данных или непонимание ограничений, налагаемых термодинамикой, вело к тому, что некоторые термодинамические выводы не соответствовали экспериментальным результатам. Это в свою очередь вызывало определенное недоверие к тем общим выводам, которые были сделаны на основе термодинамики. Другой причиной, ограничивающей применение термодинамического подхода к проблемам органической химии, являлся недостаток доступных численных значений свободных энергий. Данные но химической термодинамике настолько рассеяны в научной литературе, что без сводных таблиц было крайне трудно работать термохимикам, занимающимся практическими расчетами. Наряду с этим выявилась скудность данных для органических соединений, что было впервые отмечено Парксом и Хаффманом еще в 1932 г. в их оригинальной монографии Свободные энергии органических соединений . В этой очень полезной книге были полностью учтены оба отмеченных выше фактора. [c.13]

    МОЖНО изменять непосредственное лигандное окружение реакционного центра, а влияние природы и положений других лигандов в комплексе на кинетику реакции позволяет более глубоко изучить механизм реакций (что компенсирует отсутствие широты охвата ). Кроме того, реа-гируюш,ие вещества могут нести метку , что позволяет получать подробные сведения об изменении конфигурации. Этот подход очень напоминает метод меток , уже рассмотренный для 4-координационных плоских -комплексов, и является не чем иным, как классическим принятым в органической химии подходом к изучению механизмов реакций. [c.121]

    Органические системы послужили как бы моделями металлических сплавов, так как после того, как было обнаружено сходство в их микроструктуре, оказалось, что выводы о факторах, способствующих образованию непрерывных твердых растворов двух органических компонентов (например, принадлежащих к камфарной группе), можно перенести на процессы, происходящие при выплавке стали. Б. Н. Меншуткин успешно применил термический анализ для изучения двойных систем эфира с бромистым и иодистым магнием (1903 г. и след.) с целью изучить механизм реакции Гржньяра. Таким образом, был переброшен один из первых мостов между физико-химическим анализом и классической органической химией. Физико-химический анализ оказался методом, пригодным для изучения промежуточных продуктов сложных органических реакций. Это видно из другого цикла работ Меншуткина, посвященных изучению тем же методом двойных систем бензола и его замещенных с хлористым и бромистым алюминием, что способствовало выяснению механизма одной из важнейших в органической химии реакции Густавсона — Фриделя — Крафтса. [c.143]


Смотреть страницы где упоминается термин Как можно изучать органическую химию: [c.50]    [c.139]    [c.14]    [c.53]    [c.231]   
Смотреть главы в:

Химия для всех -> Как можно изучать органическую химию




ПОИСК





Смотрите так же термины и статьи:

Органическая химия

Что изучает химия



© 2025 chem21.info Реклама на сайте