Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внехромосомные генетические

    Плазмида — внехромосомный генетический элемент кольцевая самовоспроизводящаяся молекула ДНК используется в генной инженерии для переноса генов от донора к реципиенту. [c.191]

    Современные представления о генетическом аппарате прокариот описаны выше (см. гл. 3). В определенных условиях в клетке может находиться несколько копий бактериальной хромосомы. ДНК содержится также во внехромосомных генетических элементах — плазмидах, в большинстве случаев являющихся кольцевыми, автономно реплицирующимися небольшими молекулами. [c.239]


    Лучше всего процессы репликации изучены для наиболее простых систем — бактерий, бактериофагов и внехромосомных генетических элементов бактерий плазмид. [c.407]

    Плазмида (Plasmid) Внехромосомный генетический элемент, способный к длительному автономному существованию и репликации. Обычно это двухцепочечная кольцевая ДНК длиной 1-200 т.п.н. [c.556]

    Плазмиды — дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем. За счет автономной репликахщи плазмиды могут давать явление амплификации одна и та же плазмида может находиться в нескольких копиях, тем самым усиливая проявление данного признака. [c.20]

    У многих бактерий обнаружены внехромосомные генетические элементы — плазмиды. Это кольцевые ковалентно замкнутые молекулы. ДНК, содержащие от 1500 до 40 ООО пар нуклеотидов, реплицирующиеся автономно как единое целое. К настоящему времени плазмиды описаны у 135 видов, принадлежащих более чем к 40 родам, располагающимся в разных группах Определителя бактерий Берги. Обычно о присутствии плазмид в бактериальной клетке судят по проявлению определенных признаков, которые присущи этим структурам, т. е. кодируются их генетическим материалом. К таким признакам относится устойчивость к некоторым лекарственным препаратам, способность к переносу генов при конъюгации, синтез веществ антибиотической природы, способность использовать некоторые сахара или обеспечивать деградацию ряда веществ. Большую группу составляют плазмиды с нерасшифрованными функциями такие плазмиды выявляют с использованием фи-зико-химических методов. [c.127]

    Плазмиды — это внехромосомные генетические элементы, выявляемые в бактериях различных семейств. Они представляют собой двухцепочечные кольцевые молекулы ДНК размером от 2 тпн до более чем 300 тпн. Плазмиды могут нести гены, которые обусловливают фенотипическое отличие содержащих их клеток от бесплазмидных клеток. Культура, несущая плазмиду, обозначается следующим образом за наименованием бактериального штамма указывается в квадратных сшбках название плазмиды, например, Е. соИ НВ101[Со1Е1]. [c.85]

    Важнейшим методом селекции микроорганизмов является отбор мутантов, т. е. организмов с измененными наследственными признаками, которые появляются в результате мутаций. В самом широком смысле мутацию можно определить как внезапно возникающее наследуемое изменение в генетическом материале клетки. Следует различать мутации цитоплазматические, затрагивающие внехромосомные генетические детерминанты, и ядерные, или хромосомные. В свою очередь, хромосомные мутации можно разделить на три основных типа 1) изменение числа хромосом 2) изменение числа и порядка расположения генов (перестройки хромосом или структурные изменения) 3) изменения индивидуальных генов (внутригенные изменения, или мутации в наиболее узком смысле этого слова) (Ш. Ауэрбах, 1978). В селекции микроорганизмов основное значение имеют последние два типа мутаций. [c.70]


    Внехромосомные генетические элементы нередко изменяют фенотипические свойства клеток. Это связано с тем, что они могут нести детерминанты устойчивости к антибиотикам (R- [c.88]

    Плазмиды - внехромосомные генетические элементы, способные к длительному автономному существованию и репликации в клетке. Чаще всего это кольцевые двунитевые молекулы ДНК длиной до 200 тыс. пар нуклеотидов. Могут содержать, помимо необходимых для существования плазмиды, дополнительные гены, например, гены устойчивости к солям тяжелых металлов или устойчивости к антибиотикам. Бактерия может содержать одну или несколько разных плазмид, копийность которых также может быть различной. [c.125]

    В пользу рассмотренной выше точки зрения говорит тот факт, что симбиотические отношения суш,ествуют и между современными организмами. Так, в цитоплазме зеленой парамеции Parame ium bursa-ria) присутствует одноклеточная водоросль хлорелла ( lorella) обычное зеленое растеньице, которое может жить и самостоятельно. Вероятно, сожительство хлореллы с парамецией возникло случайно [28]. Биологи и биохимики сразу приняли симбиотическую теорию возникновения митохондрий. Однако Рафф и Малер выдвинули другую гипотезу, предположив, что митохондрии возникли скорее из мезосом-ных мембран, а ДНК в них происходит из внехромосомного генетического материала (из плазмид или эписом гл. 15, разд. Г.7), который часто встречается в клетках прокариот [30]. Этот вопрос так и остается открытым и широко обсуждается [30—-32]. [c.38]

    Трансдуцироваться могут и внехромосомные генетические элементы. Механизмы трансдукции плазмид несколько отличаются от механизмов трансдукции хромосомных генов. В целом фаги могут трансдуцировать любые плазмиды, но частота их трансдукции обычно ниже, чем хромосомных маркеров. Вероятно, кольцевую плазмидную ДНК упаковать труднее, чем отдельные линейные фрагменты. Поскольку перенос цельных плазмид подчиняется общим законам трансдукции, размер пакуемой ДНК должен быть равен геному фага. Если плазмида меньше, то для достижения соответствующего размера она должна быть достроена . Возможны несколько способов такой достройки за счет других плазмид за счет фаговой ДНК за счет полимеризации плазмиды. [c.100]

    Плазмиды. Как уже отмечалось, (см. гл. 2), плазмиды представляют собой внехромосомные генетические элементы, которые встречаются во многих видах бактерий. Они существуют обычно в виде ковалентно замкнутых кольцевых суперспиральных молекул ДНК, что является физической особенностью, которая лежит в основе ряда методов очистки плазмид. В качестве векторов используются обычно небольшие плазмиды размером до 15— 20 т. п. о., чаще всего от 2 до 10 т. п. о. [c.143]

    Внехромосомные генетические элементы могут придавать бактериальным клеткам дополнительные свойства, выявляемые фенотипически. Это связано с тем, что они могут содержать [c.211]

    У дрожжей-сахаромицетов подробно изучен клеточный цикл развития (рис. 12.1). Клетки S. erevisiae делятся почкованием. Вегетативные клетки штаммов, выделяемых из природных образцов или используемых в производстве, как правило, диплоидны. При определенных условиях в них происходит мейоз, и диплоидная клетка превращается в аск с четырьмя гаплоидными аскоспорами, окруженными общей оболочкой. Эти структуры называют тетрадами. (В лабораторных условиях споруляцию инициируют перенесением диплоидных клеток в среду, содержащую ацетат натрия.) Оболочку аска можно разрушить механически или ферментативно и с помощью микроманипулятора при наблюдении в микроскоп разъединить ас-коспоры. После прорастания каждая спора дает начало отдельному гаплоидному клону со специфическим генотипом и фенотипом. Данный подход, называемый тетрадным анализом, позволяет методически просто выяснять, локализован ли изучаемый генетический маркер на хромосоме или он входит в состав внехромосомных генетических элементов. Хромосомные гены дают картину расщепления в соответствии с классическими законами генетики, а внехромосомные признаки, как правило, не расщепляются в мейозе. [c.287]

    В основе молекулярного клонирования лежит встраивание нужного фрагмента ДНК (вставки) в другую молекулу ДНК (вектор), которая способна реплицироваться в соответствующей клетке-хозяине (см. рис. 11.12). Такое встраивание осуществляется in vitro, а затем образовавшиеся рекомбинантные молекулы ДНК вводятся в клетки. Векторая молекула должна содержать точку начала репликации (ori). Кроме того, для репликации нужны специфические ферменты и другие белки их поставляет клетка-хозяин или они кодируются самим вектором. Вектором может быть любой небольшой внехромосом-ный элемент (например, плазмида, ДНК фага или вируса). Каждый из этих элементов встречается в природе в клетках определенных видов, и большинство из них реплицируется только в природном хозяине или клетках близкородственных видов. В большинстве случаев эволюция механизма репликации протекала в направлении создания оптимальных условий для существования в клетках природного хозяина внехромосомных генетических элементов, при этом использовались метаболиты, ферменты и другие белки клетки-хозяина, а также ее аппарат белкового синтеза. Поэтому основным инструментом молекулярного клонирования всегда является двухкомпонентная система—совместимая комбинация хозяина и вектора. [c.227]


    Ген, кодирующий пенициллиназу, локализован в различных плазмидах (разд. 31.6). Эти внехромосомные генетические элементы у некоторых видов бактерий способны быстро появляться и исчезать. В ряде бактериальных штаммов пенициллиназа является индуцируемым ферментом. По-ви-димому, пенициллиназа возникла в ходе эволюции как механизм детоксикации, поскольку она свойственна только микроорганиз- [c.226]


Смотреть страницы где упоминается термин Внехромосомные генетические: [c.21]    [c.87]    [c.130]    [c.15]    [c.65]   
Искусственные генетические системы Т.1 (2004) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте