Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Терминали аксона

    В нервно-мышечном синапсе различают пресинаптическую часть (терминали аксона) и постсинаптическую зону (участок мышечного волокна). Эти два структурных образования разделены межклеточным пространством — синаптической щелью. Нервно-мышечный синапс является химическим. При его функционировании из терминали аксона выделяется медиатор ацетилхолин, который вызывает возбуждение мышечного волокна, приводящее к сокращению. В терминалях аксона находятся синаптические пузырьки диаметром 30—60 нм, содержащие ацетилхолин, а также мелкие митохондрии со светлым матриксом и немногочисленными кристами, микротрубочки и нейрофи-ламенты. Терминали аксона снаружи окружены леммоцитами, или шванновскими клетками (рис. 15 см. рис. 14). Участки терминалей, где происходит выведение медиатора, называются активными зонами. От их размера и числа зависит уровень секреции медиатора. [c.32]


    Веточка аксона, подойдя к волокну, образует несколько нервных окончаний (терминалей), которые размеш аются на поверхности волокна в специальных вытянутых углублениях (бороздках) таким образом, что между мембраной терми-нали аксона и мембраной волокна вдоль всей длины терминали остается зазор в 40-50 нм — синаптическая ш ель. Терминаль аксона и углубление сарколеммы покрыты шванновской клеткой. Вся эта структура называется концевой двигательной пластинкой, нервно-мышечным синапсом или нервно-мышечным соединением. [c.227]

    Терминали аксона могут оканчиваться только на определенных типах клеток в пределах терминальной области [c.250]

    Общие сведения о нервной системе изложены в гл. 1. В дальнейшем мы часто будем пользоваться терминами нерв и аксон . Здесь следует напомнить, что нерв (который обычно представляет собой нервный ствол) состоит из пучка аксонов, а ганглий содержит синапсы. Проведение по нерву является исключительно аксонным, в то время как в ганглии имеют место как аксонное проведение, так и синаптическая передача. У кальмара исследование часто прово- [c.184]

    Нелегко суммировать эти противоречивые исследования, в большинстве которых термин внутренний обозначает совершенно различные вещи. Ясно, что ионизированные соединения плохо проникают в мозг млекопитающих и в аксон членистоногих. Вероятно, здесь нужно считаться с двумя факторами а) плохим продвижением этих веществ через липоидное основное вещество и б) расположением части холинэстеразы внутри нейрона, где она защищена нейрональной мембраной. У членистоногих защитный слой, по-видимому, окружает аксон. Этих двух факторов достаточно, чтобы объяснить факт, что 25—40% фермента не подвержено действию ионизированных соединений. Основания с р/Са 8 и выше совершенно неожиданно [c.220]

    Химическая гипотеза может быть изложена так. Импульс, приходящий по аксону, вызывает в конце терминали выделение химического вещества (так называемого медиатора, т. е. посредника), которое диффундирует через синаптическую щель и достигает мембраны к летки-мишени (так называемой постсинаптической мембраны) (рис. 40). В результате меняется проницаемость этой мембраны и возникает ток, который течет через синаптическую щель и через мембрану тела клетки. [c.157]

    Итак, химическая теория торжествовала. Некоторые медиаторы, которые вначале были столь же гипотетичны, как клеточная мембрана, были выделены в чистом виде и их химическое строение было определено. С помощью микроэлектродов, введенных в клетку и аксон, было выяснено, что время, затрачиваемое на выделение медиатора из терминали и его диффузию через щель, составляет примерно 0,6—0,8 мс у теплокровных животных. [c.158]


    А что будет, если волокно не расширяется, а, напротив,, сужается Повторив рассуждения о расширяющемся во- локне, так сказать, со знаком минус , легко сообразить,, что по мере приближения ПД к месту сужения его скорость должна нарастать, а амплитуда увеличиваться (рис. 44, б). Это явление оказалось очень важным — ведь к нервным волокнам вполне применима поговорка Сколько веревочке ни виться... . Всякий аксон в конце концов оканчивается, причем тонкими терминалями, получается как бы сужение до нуля . Значит, при подходе к терминали импульс все более разгоняется, его амплитуда растет. Возникает явление, похожее на гидравлический удар, когда текущая по трубе жидкость натыкается на препятствие. Возрастание амплитуды потенциала в конце терминали очень важно для работы химических синапсов, так как улучшает условия выделения медиаторов. [c.190]

    Изучение развивающейся нервной системы началось в XIX веке вместе с появлением первых микроскопических n j-следований. Одним из наиболее крупных ученых в этой новой области был швейцарец Гис (W. His), работавший в то время в Лейпциге. Многие из проведенных им исследований были выполнены у него дома. Говорят, что микроскопический материал Гиса был низкого качества, однако его идеи были ясны и глубоки. В 1880-х годах он описывал аксон как вырост тела развивающейся нервной клетки, и это явилось важным шагом на пути к концепции нейрона как клетки и к разработке нейронной теории. Мы обязаны Гису также введением таких терминов, как дендрит (ветви, отходящие от тела клетки) и нейропиль (бесклеточная область, содержащая связи между аксонами и дендритами). [c.236]

    Самый первый уровень — это распределение синапсов на отдельном небольшом участке сомы клетки, дендрита или терминали аксона. При этом может встретиться случай простой конвергенции (схождения) нескольких входов или случай простой дивергенции (расхождения) на несколько выходных зон. Кроме того, могут иметь место последовательные или же реципрокные взаимодействия. Во всех таких случаях данный участок выступает в качестве очень локальной интегративной единицы. Мы можем говорить об этой ситуации, как о наиболее компактном типе локальной сети или о микросети. Нередко некий тип микросети повторяется по всему данному слою или на клетках данного типа, тем самым выступая в качестве модуля для особого способа обработки информации. [c.125]

    Терминали аксонов могут оканчиваться" только на определенных частях этих клеток найрнмер, на участке поверхности дендрита) [c.250]

    Процессы, происходящие при поступлении импульса в нервное окончание, т.е. в пресинаптическую область, подробно описаны в предьщущей главе, здесь напомним только основные из них. При распространении нервного импульса происходит деполяризация пресинаптической мембраны л изменение ионных токов. Наиболее важным событием в нервном окончании является мобилизация ионов Са, которые вызывают миграцию и открывание многочисленных синаптических везикул. Эти везикулы непосредственно связываются с участками пресинапса и открьггие их приводит к высвобождению нейромедиатора и диффузии его в синаптическую щель. В терминали аксона сконцентрированы и ферменты синтеза медиатора, митохондрии для энергетического обеспечения этого процесса, системы белков-транспортеров, способствующих узнаванию и обратному захвату молекул нейромедиатора. Этот последний механизм, по-видимому, существенно экономит затраты на синтез готового нейромедиатора и участвует в регуляции срока его действия. [c.257]

Рис. 1.1. Строение нервной системы по нейронной и ретикулярной гипотезам. а - несколько нервных клеток из сетчатки человека, дендриты которых, разветвляясь и соединяясь вместе, образуют нервную сеть (по Догелю). Ъ - схема строения нервной ткани согласно ретикулярной гипотезе, с - корзинчатые клетки мозжечка (в) белой крысы по Рамон-и-Кахалю (А - клетки Пуркинъе, а — перицеллюлярные разветвления аксона (с), d - тонкие концевые терминали аксона) Рис. 1.1. Строение <a href="/info/96851">нервной системы</a> по нейронной и ретикулярной гипотезам. а - несколько нервных клеток из сетчатки человека, дендриты которых, разветвляясь и соединяясь вместе, <a href="/info/1624219">образуют нервную</a> сеть (по <a href="/info/1077936">Догелю</a>). Ъ - <a href="/info/325342">схема строения</a> <a href="/info/188178">нервной ткани</a> согласно ретикулярной гипотезе, с - корзинчатые <a href="/info/101393">клетки мозжечка</a> (в) белой крысы по <a href="/info/324570">Рамон</a>-и-Кахалю (А - клетки Пуркинъе, а — <a href="/info/822966">перицеллюлярные</a> разветвления аксона (с), d - тонкие концевые терминали аксона)
    По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]


    Действительно, как показало серебрение, а потом и электронная микроскопия, непосредственного контакта между клетками все-таки нет клетки разделены щелью, заполненной жидкостью, через которую ток пойдет не только в клетку-мишень, но и вытечет куда-то на сторону . Расчеты, проведенные в разных лабораториях мира,, дали обескураживающие результаты. Оказалось, что при реальных экспериментально известных значениях сопротивлений мембран (которые были получены, конечно, не для области синапса, а для аксона или тела клетки), межклеточной среды и размеров синаптических контактов и щелей в клетку-мишень будет затекать не более 0,01% всего тока, вытекающего из терминали. Этот ток к тому же растечется по всему телу клетки и не сможет соэдать изменения ее потенциала, необходимого для возбуждения или сопоставимого с реально измеряемыми изменениями. [c.159]

    Подобно тому как гигантский аксон кальмара является образцом] нервлого волокна, образцом нервной клетки является мотонейрон кошки (рис. 51). Эта клетка имеет относительно большие размеры (около 30 мкм) и позтому наиболее детально изучена. Мотонейрон (МН) имеет тело и дендриты, на которых расположены около 10 ООО синапсов, образованных окончаниями других нервных клеток. От тела МН отходит выходной отросток — ак-сон представляющий собой миелинизированное волокно, У его основания имеется особая структура — аксонный холмик это часть МН, имеющая мембрану с наиболее низким порогом. Аксоны МН могут быть очень длинными, например, у кошки — сантиметров 25, а у слона или жирафа — и несколько метров. В конце аксон МН разделяется на веточки — терминали, которые оканчиваются на мышечных волокнах. Кроме того, еще внутри спинного мозга, где лежат МН, аксон отдает боковые веточки (кол-латерали) которые идут к другим нервным клеткам. [c.206]

    Одним из важных признаков спинальных рефлексов является то, что процесс протекает в направлении от сенсорных единиц к двигательным, но никогда не осуществляется в противоположном направлении. Шеррингтон предположил, что это происходит благодаря тому, что синапс устроен наподобие вентиля. Эта мысль согласовалась с другой — о том, что дендриты и сома нервной клетки являются рецепторными частями нейрона, на которые поступают сигналы, а аксон и его терминали — эффекторными частями, по которым сиг алы уходят. Такое представление о работе нейрона было разработано примерно в 1890 г. Кахалом и бельгийским анатомом А. Ван-Ге-гухтеном (который сразу вслед за Кахалом овладел методом Гольджи) и получило название закон динамической поляризации . Вскоре этот закон был признан следствием нейронной доктрины. Он послужил логической основой для понимания того, как отдельные нервные клетки могут объединяться в группы и в цепочки, по которым передаются нервные сигналы (А, Б на рис. 5.1). Только в последнее время, когда были проведены новые исследования по ультраструктуре и физиологии синаптической организации и потребовалось объяснить сложное синаптическое взаимодействие дендритов и аксонных терминалей, этот закон пришлось подвергнуть пересмотру. [c.106]

    Первыми синапсами, которые удалось идентифицировать с помощью электронной микроскопии, были простые контакты терминалей, относимые к аксо-соматическому и аксо-дендрит-ному типам. Поскольку эти простые типы соответствовали представлению о поляризованном нейроне, их стали считать классическими синапсами. Позднее были идентифицированы аксо-аксонные и дендро-дендритные типы синапсов. Тогда же были обнаружены последовательные и реципрокные синапсы, а также различные типы специализированных синаптических контактов и терминалей. Поскольку такие синапсы, терминали и типы выходят за рамки классических представлений, то на практике простые синапсы стали называть стандартными, а все остальные — нестандартными или даже необычными . [c.120]

    В опытах с перевязкой аксона показано, что везикулы, вакуоли, тубулярные структуры ЭПР транспортируются вдоль по нейрону в прямом и обратном направлениях и без включения внутрь экзогенных маркеров. Это указывает на контейнерный (в форме везикул) путь переноса макромолекул от центра к периферии и, наоборот, без трансформации веществ. Например, пероксидаза, захваченная перикарионом нейрона, попадает в эндосомы и, минуя систему ГЭРЛ, с прямым медленным аксо-током (1,5 мм/сут) переносится в терминали. Другой пример ацетилхолинэстераза, синтезируясь как белок в теле нейрона, мигрирует в терминаль с медленным аксотоком как растворимая форма фермента и с быстрым аксотоком в везикулах. [c.33]


Смотреть страницы где упоминается термин Терминали аксона: [c.133]    [c.175]    [c.189]    [c.41]    [c.161]    [c.49]    [c.33]    [c.39]    [c.225]   
Мышечные ткани (2001) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Терминалы



© 2025 chem21.info Реклама на сайте