Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Опорные функции

    Углеводы — это обширный класс органических соединений с эмпирической формулой С (Н, 0) , образование которых связано с процессом фотосинтеза. Углеводы в растениях находятся в виде моносахаридов (глюкоза — С Н О ), олигосахаридов (крахмал) и полисахаридов (целлюлоза — (С Н О ) , где п > 10000. Целлюлоза — основной строительный материал растительных тканей. Она выполняет в растениях опорные функции и придает им механическую прочность. По распространенности органических веществ на земном шаре она занимает первое место. [c.47]


    Опорные полисахариды. Наиболее распространенным полисахаридом этой группы является целлюлоза. Линейное построение молекулы и Р-1,4 связи обусловливают возможность образования длинных нитей, соединенных между собой водородными связями, что и приводит к требуемым физическим свойствам. К этому же хемотипу относятся и другие полисахариды клеточных стенок — ксиланы, глюкоманнаны, альгиновая кислота. Аналогичная структура определяет опорные функции хитина. Жесткая цепь остатков N-ацетилглюкозамина определяет и механические свойст- [c.608]

    Хитин является пленко- и волокнообразующим полимером. Хитиновые оболочки кроме опорной функции выполняют также роль полупроницаемых мембран, регулирующих водообмен организмов насекомых с окружающей средой. Хитин нерастворим в воде, спиртах, кетонах, в других органических растворителях. Он способен медленно растворяться в безводной НСООН. [c.330]

    Параметры /2 и С2 Для второй опорной функции находим из уравнений (3.30) и (3.31), в которых полагаем [c.142]

    У животных, лишенных внутреннего скелета (беспозвоночных), выработались те или иные приспособления, выполняющие опорные функции. В частности, у членистоногих, высокоорганизованного типа беспозвоночных, тело покрыто твердой внеклеточной оболочкой (кутикулой членистоногих), выполняющей функции наружного скелета механической защиты организма и опоры для органов движения (общеизвестным примером могут служить панцири ракообразных). По наружному расположению и основной биологической роли кутикула у членистоногих может быть уподоблена клеточной стенке. [c.148]

    Структурная функция. Белки, выполняющие структурную (опорную) функцию, занимают по количеству первое место среди других белков тела человека. Среди них важнейшую роль играют фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже, эластин в сосудистой стенке и др. Большое значение имеют комплексы белков с углеводами в формировании ряда секретов мукоидов, муцина и т.д. В комплексе с липидами (в частности, с фосфолипидами) белки участвуют в образовании биомембран клеток. [c.21]

    В организмах животных некоторые специальные белки выполняют особые функции. Белки служат для запасания (миоглобин) и переноса (гемоглобин, гемоцианин) кислорода. Некоторые низкомолекулярные белки, точнее, полипептиды, являются гормонами (с. 50). Гамма-глобулины высших организмов защищают их от чужеродных биополимеров, функционируя в качестве антител — в иммунных процессах. Наконец, белки, входящие в состав соединительной ткани, хрящей и сухожилий, а также белки кожи, волос и перьев выполняют опорную функцию, обеспечивая надежную и в то же время подвижную взаимосвязь органов, целостность организма и его защиту от внещних воздействий. [c.87]


    В клетках растений такую функцию выполняет главным образом вторичная оболочка клеточной стенки. У высших растений эта оболочка состоит в основном из целлюлозы в меньших количествах присутствуют гемицеллюлозы. У большинства грибов опорные функции в клеточной стенке выполняет хитин. [c.601]

    В организме животных основные опорные функции выполняются соединительной тканью (кость, хрящ, связки и т. д.). Биологические особенности организма животных требуют, чтобы эта опора была не только прочной, но и достаточно эластичной, чтобы обеспечить возможность движения. [c.602]

    У членистоногих главную опорную функцию в организме выполняет наружный скелет — кутикула, основным компонентом внутреннего слоя которой является хитин (см. стр. 540), находящийся в ней в виде химического соединения с белком . [c.602]

    Целлюлоза — основной строительный материал растений. Выполняет в растениях опорные функции, придает им механическую прочность. По распространенности органических веществ на земном щаре целлюлоза занимает первое место. Она представляет собой высокомолекулярное соединение регулярной линейной структуры, построенное из остатков Д-глюкозы  [c.23]

    Пектиновые вещества выполняют опорную функцию в стенках растительных клеток, главным образом в молодых плодах и тканях. В основе молекул этих полисахаридов лежит цепь из остатков /)-галактуроновой кислоты  [c.23]

    Если в растительном мире основным структурным материалом является целлюлоза, то в животном мире таким материалом служат белки, среди которых коллагены представляют наиболее важную и широко распространенную группу. Они являются представителями фибриллярных белков и создают каркас в теле животного. Коллагены, составляя около 30% всех белков организма животных, выполняют защитные и опорные функции, играя основную роль в образовании хрящей, сухожилий, костей, стенок кровеносных сосудов и покровных тканей. [c.351]

    МЕТОД ОПОРНЫХ ФУНКЦИЙ [c.147]

    Расчет кинетических констант методом опорных функций [84] основан на сведении дифференциальных уравнений скоростей реакций к алгебраическому уравнению путем прямого численного расчета входящих в него функций по экспериментальным данным. Идею метода поясним на примере кинетики двух последовательно-параллельных реакций [c.147]

    Величины Fi (г = 0, 1, 2,. . . ) называются опорными функциями. Их значения находятся путем численного расчета по экспериментальной кинетической кривой у = f (г). Например, в полученном уравнении для определения F и F требуется численное дифференцирование. В других случаях для отыскания Fi необходимо проводить численное интегрирование, например J t/dr, J y dx и т. д. Значения констант к находятся либо простым решением алгебраических уравнений, найденных для ряда точек кинетической кривой, либо способом наименьших квадратов. [c.148]

    Очевидно, что сведение дифференциального уравнения к алгебраическому может быть выполнено различными путями. Наилучшим будет тот, который приводит к меньшему числу опорных функций с наиболее простыми способами их вычисления. В частности, рассмотренный выше дифференциальный вариант может быть решен иначе, например почленным интегрированием дифференциального уравнения второго порядка. В результате находим  [c.148]

    НИИ двух опорных функций — и у у — а)Фх, когда а изве- [c.149]

    Возможность получения алгебраических уравнений с различными опорными функциями позволяет решить задачу несколькими путями и тем самым проконтролировать применимость исходных уравнений и корректность расчета. [c.149]

    Между минимальным числом г опорных функций при их взаимной независимости и порядком п дифференциального уравнения или суммой порядков для системы уравнений имеет место следуюш ая простая связь [84]  [c.149]

    Отличительной особенностью белков опорных тканей является их полная нерастворимость в воде, солевых растворах, разведенных кислотах и щелочах, что обеспечивает возможность осуществления этими белками опорной функции. Как мы видели (стр. 46), эти белки обычно относятся к фибриллярным, или волокнистым, белкам, частицы которых имеют форму более или менее вытянутых волокон или нитей. [c.53]

    Углеводы распространены в природе, они являются продуктами ассимиляции углекислого газа зелеными растениями. Углеводы считают источником всего связанного углерода органических соединений на Земле. Часть синтезированных углеводов идет на построение клеток и тканей растений, где они выполняют опорную функцию (клетчатка). Другая часть углеводов откладывается как запасной питательный материал в корнях, клубнях, стеблях, семенах и плодах. Некоторая часть углеводов идет на образование жиров, белков, витаминов и других веществ. [c.351]

    Полисахариды составляют основную массу органического вещества на Земле. Большая часть сухого веса высших наземных растений и водорослей приходится на полисахариды несколько меньшее, хотя и очень значительное количество полисахаридов выполняет скелетные функции, обеспечивая жесткость клеток или их агрегатов. К таким полисахаридам относятся целлюлоза и хитин — два наиболее распространенных в природе органических вещества. Целлюлоза является основным структурным материалом растений, хотя синтезировать ее способны также некоторые бактерии и беспозвоночные. Хитин служит главным компонентом скелета членистоногих, а также входит в состав клеточных стенок грибов. В построении растительных клеточных стенок принимает участие и ряд других полисахаридов маннаны грибов , гемицеллюлозы и пектиновые вещества высших растений. Морские водоросли значительно отличаются от наземных растений полисахаридным составом клеточных стенок, что, несомненно, связано со специфическими условиями их обитания. Характерными компонентами морских водорослей являются полисахариды, этерифицированные серной кислотой,— агар, каррагинин, фукан, галактаны и ряд более сложных сульфатов гетер о полис ах ар и дов . В организме позвоночных опорные функции выполняют хондроитинсульфаты и родственные мукополисахариды соединительной ткани . Клеточные стенки бактерий построены из сложных гликопротеинов -.  [c.479]


    В противном случае выштампованные опорные элементы соседних пластин, повернутые один относительно другого на 180°, совпадут, а все противостоящие опорные элементы окажутся на одной линии, что нарушит их опорную функцию. [c.98]

    И б2 опорной функции должны уже удовлетворять двум уравнениям, вь1текаю-щим из условий нормировки и ортогональности к 1 В-функции  [c.142]

    ХИТИН. Ракообразные имеют прочный твердый наружный скелет,, состоящий в основном из хитина — полимера 2-ацетамидо-2-дезокси-в-глю-козы. По мере роста ракообразные периодически сбрасывают его во время липьки, так как в отличие от тканей, увеличивающихся в результате клеточного деления, жесткий полимер сохраняет постоянные размеры. Хитин не только выполняет опорные функции, но и играет роль кожицы, регулирующей поступление или потерю воды. Интересно, что хитин ракообразных отличается от хитина насекомых. В первом случае этот полимер пропитан карбонатом кальция и другими солями, во втором — смесью веществ под общим названием насекомого воска . И тут и там происходит заполнение пор [c.462]

    Функции полисахаридов весьма разнообразны. Некоторые из них (крахмал, гликоген, инулин) являются знергетическими резервами организма, другие же (клетчатка, гймицеллголоза, хитин) имеют структурные, опорные функции. [c.195]

    По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]

    Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов. [c.50]

    Все биологические процессы осуществляются при непременном участии белков. Они служат регуляторами генетической функции нуклеиновых кислот, в качестве ферментов участвуют во всех стадиях биосинтеза полипептидов, полинуклеотидов и других соединений, катализируют все метаболические процессы. Особые сократительные белки ответственны за клеточные и внутриклеточные движения. В комплексе с липидами белки вхбдят в состав мембран, обеспечивая активный транспорт метжолитов в клетку и из нее. Белки служат для запасания и перешса кислорода. Низкомолекулярные полипептиды, гормоны, Стимулируют функциональную активность в клетках других тканей и органов. Белки осуществляют иммунологическую функцию, защищая организм от чужеродных соединений. Они входят в состав кожи, волос, соединительных тканей, костей и т. д., выполняя динамическую опорную функцию, обеспечивая тем самым взаимосвязь органов, их механическую целостность н защиту. Это далеко не полный перечень осуществляемых белками функций. [c.5]

    Участки белка, которые обращены во внеклеточную среду, могут подвергаться гликозилированию. В мембранах растений и бактерий полисахара играют самостоятельную роль, образуя наружную оболочку. В клетках животных, в которых наружный слой включает углеводы, имеется внутренний цитоскелет, состоящий из актина и других легко полимеризующихся белков он имеет регулярную связь с мембранными белками и выполняет формообразующую и опорную функцию (рис. 9.4). [c.301]

    Наконец, специальные белки, входящие в состав кожи, волос и перьев, соединительной ткани и т. д., выполняют динамическую опорную функцию, обеспечивая нежесткую, но надежную взаимосвязь органов, их механическую целостность и защиту. [c.177]

    Таким образом, морские водоросли содержат ксиланы двух видов. К первому относятся однородные ксиланы либо гетероксиланы, содержащие одновременно связи (1—>-3) и (1— -4) и, видимо, не несущие опорных функций в растениях, ко второму — линейные ксиланы клeтoч /IIx стенок со связями только (1— -3) или (1—>-4), выполняющие опорные функции. Это заключение подтверждает и характеристика строения аналогичных полисахаридов, выделенных из водорослей другого порядка — Nemaliales. [c.132]

    Склеренхима обычно состоит из мертвых клеток с толстой лигнифицированной вторвчной стенкой зта ткань выполняет опорную функцию и придает органам растения прочность. Известны два основных типа клеток склеренхимы волокна (см. рис. 19-2Х кото]ше часто образуют пучки, и склереиды-более короткие разветвленные клетки, встречающиеся в оболочках семян и плодах. [c.169]

    Случаи разрушений стальных конструкций, вызванные наво-дороживанием металла при стимулирующем действии серы, по-видимому, в действительности значительно более часты, но не все они правильно интерпретируются. Иногда разрушение статически напряженной стали в присутствии соединений серы квалифицируют как коррозионное растрескивание, хотя в действительности речь должна идти о статической водородной усталости или же комбинации этих двух механизмов разрушения. Например, разрушение подвесного моста через реку Огайо (США), происшедшее в 1967 г. и повлекшее за собой гибель 46 человек, связано, по-видимому, с иаводороживанием одной из штанг из углеродистой стали 1060, выполнявшей опорные функции канатов. В пользу этого довода свидетельствует повышенное содержание серы на поверхности трещины, разрушившей штангу толщиной 5 см. Сера попала на поверхность стали из атмосферы, загрязненной сернистым газом и сероводородом [424]. [c.156]

    Соединительная ткань состоит из межклеточных элементов, вьшолняющих структурные и опорные функции на ее долю приходится значительная часть всего органического вещества, содержащегося в теле высших животных. Сухожилия, связки, хрящи и органический матрикс костей-это наиболее знакомые нам элементы соединительной ткани. Соединительная ткань окружает кровеносные сосуды, образует важную в структурном отношении подкожную клетчатку, связьшает между собой клетки отдельных тканей и заполняет пространство между клетками так называемым основным веществом. Существуют три главных молекулярных компонента соединительной ткани два фибриллярных белка-коллаген и эластин, которые в разных соотношениях присутствуют в большинстве соединительных тканей, и протеогликаны-семейство гибридных молекул, представляющих собой белки, ковалентно связанные с полисахаридами. [c.176]

    Другие глюканы. Бактерии и грибы содержат большое число глюканов, из которых одни выполняют опорную функцию, другие же представляют собой запасные вещества. К глюканам следует отнести также многие из слизей, выделяемых микроорганизмами. Наиболее известен среди глюканов декстран, образуемый, например, в большом количе- [c.411]

    СКЛЕРОПРОТЕИНЫ — большая группа фибриллярных белков, широко распространенных в тканях животных и выполняющих опорные функции. В соответствии с классификацией белков С. определяются как простые белки, нерастворимые в разб. к-тах и щелочах и устойчивые к действию протеолитич. ферментов. К С. относят коллаген и эластин, входящие в состав волокон соединительной ткани животных, кератины волос, перьев и др. роговидных образований, фиброин нитей шелка. К С. также принадлежат нерастворимые малоизученные белки морских губок и кораллов (спонгин, горгонин и антипатин). [c.450]


Смотреть страницы где упоминается термин Опорные функции: [c.249]    [c.147]    [c.206]    [c.149]    [c.149]    [c.149]    [c.149]   
Смотреть главы в:

Углеводы -> Опорные функции


Методы оптимизации сложных химико-технологических схем (1970) -- [ c.161 ]




ПОИСК







© 2025 chem21.info Реклама на сайте