Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация процессов, реакторов н их моделей

    Классификация математических моделей проводится по типу полученных уравнений. При построении математических моделей процесса в химическом реакторе были рассмотрены две структуры потока - идеального смещения и вытеснения. Учитывая еще два рассмотренных способа организации движения реактантов через реактор проточная и непроточная схемыбыли выведены три математические модели  [c.110]


    Классификация математических моделей проводится по типу полученных уравнений. При построении математических моделей процесса в химическом реакторе были рассмотрены две структуры потока идеального смешения и вытеснения. Учитывая еще два рассмотренных способа организации движения реагентов через реактор - проточ- [c.159]

    Классификация процессов в химическом реакторе и их математических моделей [c.158]

    В современных крупнотоннажных производствах реакторные химические процессы осуществляют преимущественно в аппаратах непрерывного действия. В малотоннажных и многоассортиментных производствах по технико-экономическим соображениям часто выгодно применять реакторы периодического действия. Математические модели таких реакторов, как показано ниже, принципиально отличны друг от друга. Поэтому в основу предлагаемой классификации кладется в первую очередь принцип непрерывности и периодичности процесса (табл. 1). [c.45]

    КЛАССИФИКАЦИЯ ПРОЦЕССОВ, РЕАКТОРОВ И ИХ МОДЕЛЕЙ [c.481]

    Судя по появившимся в последнее время публикациям дезактивация катализаторов привлекает повышенное внимание исследователей. В связи с этим имеется возможность более глубоко понять процессы, лежащие в ее основе. Одной из задач предлагаемой монографии является обобщение имеющихся в этой области данных. Основное внимание в ней обращено на парофазные реакции в присутствии твердых катализаторов, хотя в качестве примеров рассмотрены и некоторые трехфазные реакции. Для таких систем пока не предложена более удобная классификация механизмов потери каталитической активности, чем их деление на вызываемые спеканием, отравлением примесями И блокировкой. Эта классификация будет также использована в монографии. Там, где это возможно, изложение ведется на яшке, близком и понятном химикам-технологам. Для описания тех или иных процессов широко используются подходы, основанные на анализе математических моделей. С точки зрения автора—это наилучший способ рассмотрения сложных явлений, имеющих место в реакциях, сопровождающихся дезактивацией как отдельных гранул, так и всего реактора в целом. Исходя из этого выбрана следующая структура монографии. После общего обзора процессов, приводящих к дезактивации катализаторов, эти процессы рассмотрены раздельно применительно к отдельным гранулам или таблеткам катализатора. Далее анализируется поведение всего реактора. Особое внимание уделено оптимизации режимов его эксплуатации. В заключение рассмотрены основные особенности процессов регенерации катализаторов. [c.10]


    Описанная классификация свидетельствует о том, что реальные химические реакторы существенно отличаются друг от друга и, следовательно, задача построения математических моделей таких аппаратов должна решаться в каждом конкретном случае с учетом особенностей процесса и конструктивного оформления. При этом необходимо использовать модели определяющих элементарных процессов (например, для реакторов непрерывного действия — модели движения потоков вещесТв и химического превращения) и присоединить к ним уравнения, описывающие тепловой режим, изменение фазового состояния реагентов, конструктивные и другие особенности. [c.144]

    Наиболее универсальной является классификация реакторов по степени перемешивания исходной смеси с продуктами реакции и по температурному режиму процесса. По степени перемешивания реагентов различают предельные режимы идеального вытеснения и полного смешения [67, 138, 178] и режимы неполного перемешивания, характеризуемые диффузионной моделью процесса [159, 161]. По температурному режиму реакторы и происходящие в них процессы делят на адиабатические, изотермические и поли-термические. [c.67]

    Однако практическое применение этих теоретических представлений еще не нашло широкого распространения при проектировании барботажных процессов, что объясняется, с одной стороны, отсутствием или недостатком сведений о таких парамет -рах гидродинамической модели, как величины продольного перемешивания фаз, механизма взаимодействия пузырей и их индивидуальных свойств и т.д., а с другой стороны, сложностью реакций, протекающих в барботажных реакторах. Поэтому вопросам математического моделирования барботажных реакторов, в частности, процессов жидксфазЕого окисления углеводородов, посвящено мало работ [9-12], а в имеющихся работах используется лишь отдельные элементы методики математического моделирования, не учитывается ряд кинетических и гидродинамических факторов, нет четкой классификации областей ведения процес -са, вычислительные трудности приводят к чрезмерному упрощению моделей реакции, что в некоторых случаях приводит к недостаточно корректному обоснованию рассмотрения только однофазной системы. [c.96]

    Получив предварительную информацию о скорости и равновесии реакции, определив необходимые гидродинамические данные Сскорость фонтанирования, модель потока газа и твердых частиц, диаметр и порозность ядра), а также используя информацию, приведенную в главах 2—5, можно разработать в полном масштабе приблизительный расчет установки для фонтанирования. Схема расчета для операций, включающих как физическую обработку твердого материала газом, так и некаталитические химические процессы (по классификации главы И), аналогична показанным в главах 8 и 9, в то время как для химических реакторов с паровой фазой требуются расчеты, рассмотренные в главе 10. Допуская па основании этого приблизительного расчета, что фонтанирующий слой продолжает сохранять свое преимущество по техническим и экономическим соображениям перед другими рассматриваемыми методами, можно перейти к следующей стадии экспериментальной работы, которая обычно выполняется на пилотной установке диаметром 30—60 см. [c.260]

    Различные более или менее подробные классификации явлений дезактивации катализаторов приводятся также в некоторых других работах [24—26]. Например, предлагается [26] различать старение и утомление катализатора. В случае старения уменьшение активности катализатора определяется только временем его работы и не зависит от количества иереработаниого сырья. При утомлении скорость на-деиия активности зависит от локальной скорости каталитической реакции. Рассмотрено утомление в слое катализатора. В реакторе с неподвижным слоем волна утомления постепенно продвигается вдоль слоя катализатора и процесс оказывается нестационарным. (Интересно сравнить с временно-потоковой моделью [18, 19].) В реакторе с подвижным слоем в зависимости от характера движения катализатора при утомлении возникает ряд интересных особенностей. [c.11]


Смотреть страницы где упоминается термин Классификация процессов, реакторов н их моделей: [c.482]    [c.156]    [c.173]    [c.68]    [c.147]   
Смотреть главы в:

Инженерное оформление химических процессов -> Классификация процессов, реакторов н их моделей




ПОИСК





Смотрите так же термины и статьи:

Классификация моделей ХТС

Модели Модели процессов

Процесс модель

Процесс реакторов

Реактор классификация



© 2025 chem21.info Реклама на сайте