Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моделирование паровой фазы

    Предпосылкой автоматизации непрерывно работающих пилотных ректификационных установок является решение задачи получения достоверных опытных данных, на основе которых можно разрабатывать промышленные установки. На рис. 362 показана экспериментальная установка, предназначенная для моделирования промышленного процесса перегонки сырой нефти. Установка работает непрерывно. Она состоит из одной основной и трех дополнительных колонн, предназначенных для отгонки низкокипящих фракций. Данная установка служит для разгонки многокомпонентных смесей, которые разделяются на четыре фракции. Кубовый продукт отбирается из куба основной колонны. Ректификационные колонны снабжены колпачковыми тарелками с отражательными перегородками для пара. По экспериментальным данным, получаемым при перегонке в этих колоннах, можно непосредственно разрабатывать установки больших размеров. Потоки паровой и жидкой фаз дозируются насосами / (см. разд. 8.6). Пульт управления 2 позволяет регулировать скорости выкипания, температуры обогревающих кожухов колонн и флегмовые числа. Регулятор вакуума 3 обеспечивает постоянную степень разрежения, а предохранительное реле 4 отключает установку, как только прекращается подача охлаждающей воды. Температуры на основных стадиях процесса непрерывно регистрируются электронным самописцем [17а]. [c.428]


    При моделировании допускается различное математическое описание отдельных явлений процесса. Например, расчет фазового равновесия но коэффициентам относительной летучести или с учетом неидеальности жидкой и паровой фаз, расчет но теоретическим тарелкам или с учетом кинетики массопередачи, с учетом или без учета удерживающей способности колонны и т. д. Формирование конкретного пакета программ производится средствами ОС/ЕС на этапе редактирования. Диалоговый режим поддерживается системой разделения времени на основе языка директив. [c.398]

    В группу уравнений математической модели непременно входят в той или иной форме соотношения для расчета равновесных зависимостей между составами жидкой и паровой фаз. От того, насколько точно описано равновесие реальной смеси, зависят результаты моделирования, а следовательно, и возможности модели в отношении прогнозирования поведения реальной колонны. [c.302]

    Пример 1. При моделировании процессов ректификации на каждой тарелке колонны необходимо по составу жидкости прн фиксированном давлении в системе определять состав паровой фазы. [c.19]

    Так, например, математическое моделирование и расчет разделения многокомпонентных азеотропных и химически взаимодействующих смесей методом ректификации сопряжены с определенными вычислительными трудностями, вытекающими из необходимости рещения системы нелинейных уравнений больщой размерности. Наличие химических превращений в многофазных системах при ректификационном разделении подобных смесей приводит к необходимости совместного учета условий фазового и химического равновесий, что значительно усложняет задачу расчета. При этом основная схема решения подзадачи расчета фазового и химического равновесия предусматривает представление химического равновесия в одной фазе и соотнесения химически равновесных составов в одной фазе с составами других фаз с помощью условий фазового равновесия. Для парожидкостных реакций можно выразить химическое равновесия в паровой фазе и связать составы равновесных фаз с помощью уравнения однократного испарения. Для реакций в системах жидкость-жидкость целесообразнее выразить химическое равновесие в той фазе, в которой содержатся более высокие концентрации реагентов. Для химически взаимодействующих систем с двумя жидкими и одной паровой фазой выражают химическое равновесия в одной из жидких фаз и дополняют его условиями фазовых равновесий и материального баланса. Образующаяся система уравнений имеет вид  [c.73]


    При моделировании процессов разделения газовых смесей при высоких давлениях и низких температурах необходимо учитывать неидеальность также и паровой фазы. В этих случаях применяют уравнения состояния Ван-дер-Ваальса, Редлиха - Квонга, Бенедикта - Рубина и др. [c.35]

    В группу уравнений математической модели непременно входят в той или иной форме соотношения для расчета равновесных зависимостей между составами жидкой и паровой фаз. От того, насколько точно описывают принимаемые соотношения действительное равновесие реальной смеси, в значительной степени зависит точность результатов моделирования, а следовательно, и возможности модели в отношении прогнозирования поведения реальной колонны. [c.256]

    Расхождение между рассчитанными по второму приближению и экспериментальными результатами имеет систематический характер и объясняется, по-видимому, тем, что при моделировании фазового равновесия не учитывалась ассоциация уксусной кислоты в паровой и жидкой фазах, а паровая фаза рассматривалась как идеальная. Возможно, что учет рассмотренных факторов может уточнить математическую модель химического равновесия. [c.55]

    В лабораторной практике используется также метод непрерывной ректификации нефти, основанный на принципе однократного испарения, когда паровая фаза обогащается легкокипящими компонентами, а жидкая — высококипящими. Но на лабораторных установках четкой ректификации непрерывного действия (ЛУНД) из-за трудоемкости и сложности фракционный состав не определяют (рис. 2.10). ЛУНД предназначены для моделирования процесса первичной перегонки нефти и определения потенциального отбора светлых дистиллятов в условиях непрерывной ректификации, а также для накопления фракций с последующим их анализом. [c.67]

    Естественно, что повышение точности рГГ-зависимостей привело к более точному расчету коэффициента летучести газов. Это было использовано Чао и Сидером в 1961 г., которые взяли уравнение ЯК за основу моделирования свойств паровой фазы при создании комбинированного метода расчета парожидкостного равновесия многокомпонентных систем. [c.13]

    Кроликовски [409]. В этой статье приведены программы ЭВМ для расчета перегонки многокомпонентных смесей и моделирования производственных процессов. В описываемых программах применено десять уравнений состояния — от уравнения идеального газа, уравнения Соава и вириального уравнения Хэйдена — О Коннела до уравнения Бенедикта — Уэбба — Рубина — Старлинга. Как отмечает автор, несмотря на то, что в литературе систематически публикуются разработки новых моделей, от старых моделей, как правило, не отказываются. Если какой-либо технологический процесс удается правильно рассчитать при помощи определенной модели, эту же модель принято использовать для прогнозирования прочих аналогичных процессов, так как изменение старой модели в подобной ситуации экономически необоснованно. В статье приводится пример моделирования поведения смеси водорода, легких углеводородов и нескольких кислородсодержащих органических веществ. Для моделирования паровой фазы этой смеси применяется вариант уравнения Редлиха — Квонга, а для жидкой фазы — уравнение Вильсона. Поскольку в центре внимания автора производственные процессы химической, а не нефтеперерабатывающей промышленности, к моделям предъявляется целый ряд требований — применимость к самым разнообразным соединениям в широких интервалах температур и давлений, а также простота и высокая скорость сходимости, т. е. своего рода универсальный характер. [c.109]

    Подобие при кипении и конденсации. Коэффициенты теплоотдачи при кипении жидкости и конденсации пара зависят от таких факторов, как теплота парообразования, смачивание, поверхностное натяжение и отношение плотностей паровой и жидкой фаз. Вследствие этих зависимостей при моделировании парогенераторов и конденсаторов с особой тщательностью необходимо подойти к замене одной рабочей жидкости другой. По крайней мере для обеих жидкостей должны быть приблизительно одинаковыми отношение удельных объемов паровой и жидкой фаз, характеристики смачиваемости, теплоты парообразования. [c.311]

    Пример 1Х-13. Моделирование процесса разделения в змеевиковом теплообменнике. На рис. 1Х-13 показана схема установки разделения, которая состоит из бака-питателя 1, змеевикового теплообменника 2, где происходит нагревание и частичное испарение исходной смеси за счет тепла паровой рубашки 5, и сепаратора 4, в котором осуществляется разделение паровой и жидкой фаз. Температура в аппарате измеряется термопарами 3. Упрощенная схема теплообменника показана на рис. 1Х-14. Состав жидкости на выходе из змеевика находится в сложной функциональной зависимости от температуры в паровой рубашке. Для определения условий ведения [c.190]


    Коррекция математической модели процесса ректификации проводится на основе экспериментальных данных о моделируемом процессе. В качестве таких данных чаще всего используются значения концентраций компонентов разделяемой смеси по высоте колонного аппарата в паровой и жидкой фазах, значения температур на ступенях разделения, а также составы продуктов разделения. При этом под оценкой адекватности модели объекта моделирования понимается сравнение расчетных и экспериментальных данных, по результатам которого и проводится коррекция математических моделей Следует отметить, что получение достаточно полного объема экспериментальных данных во многих случаях представляется сложной задачей и может служить источником ошибок, если не принять соответствующих мер по проверке их корректности. [c.38]

    Наиб, общйе решеточные модели учитывают факторы размера и формы молекул, а также энергетич. вклады. При моделировании р-ров с ориентац. эффектами и ассоциацией молекул предполагается, что энергия взаимод. зависит от взаимной ориентации молекул,- способа их контактирования. Для контактов разл. типа вводятся разл. энергии взаимообмена (Дж. Баркер, 1953). Решеточные модели, допускающие наличие вакансий в квазирешетке (т. наз. дырочные модели), позволяют рассматривать объемные эффекты в р-рах, получать ур-ние состояния, описывающее не только жидкую, но и паровую фазу. В применении к р-рам развиваются и разл. варианты ячеечных теорий, в к-рых рассматриваются зависимости своб. объема от состава. Для описания ассоциир. р-ров широко применяют теории ассоциативных равновесий, представляющие р-р как смесь мономерных [c.188]

    В практич. расчетах термодинамич. св-в Р. и., в частности при моделировании фазовых равновесий жидкость-пар, широкое распространение получили т. наз. ур-ния локального состава-ур-ние Вильсоиа, модели НРТЛ, ЮНИКВАК и др. Для ориентировочного предсказания св-в Р. н. полезны групповые модели, основанные на допущении об аддитивности вкладов разл. групп в избыточные термодинамич. ф-ции (модели ЮНИФАК, АСОГ, квазихимические групповые и др.). В настоящее время развиты модификации моделей, дающие возможность получить ур-ние состояния жидкой и паровой фаз, что особенно важно при расчетах фазовых равновесий в широком диапазоне условий. [c.189]

    Разработка ком 1нированных методов, основанных на применении уравнений состояния для описания свойств паровой фазы и теории регулярных растворов для расчета коэффициентов активности компонентов смеси в жидкой фазе. Среди этих методов наибольшее распространение получил метод Чао и Сидера, опубликованный в 1961 г. и применявшийся для моделирования процессов промысловой сепарации нефти и газа. При более высоких давлениях резко возрастает погрешность вычисления коэффициента активности компонента в жидкой фазе, что приводит к неправильному описанию парожидкостного равновесия. [c.4]

    При моделировании на ЭВМ важным критерием решения уравнения (ЗУ является время счета. Для определения коэфЗЕициентг, оязтмаемости паровой и жидкой фазы предлагается использовать усовершонствоваиннй [c.82]

    Вопрос правильного определения коэффициентов фазового равновесия (КФР) смесей с учетом влияния состава фаз является достаточно актуальным, так как расчет КФР осуществляется многократно при моделировании любого процесса фазового равновесия и ректификации. При моделировании и исследовании этиленовых установок для расчета КФР с учетом влияния состава паровой и жидкой фаз наибольшее распространение получил метод Чао-Сидера и его модификации [1-з]. Однако область применения данного метода ограничена и не охватывает всего интервала условий работы (температур, давлений, концентраций легких компонентов) моделируемых узлов этиленовых установок большой мощности. В частности, узел деметанизации, некоторые сепараторы узла предварительного охлаждения, узел получения метан-воапродной фракции работают в условиях, выходящих за пределы применимости метода Чао-Сидера. [c.28]

    В заключение отметим, что, несмотря на простоту, осуществленная Соаве модификация уравнения Редлиха—1 онга явилась очень эффективной и позволила улучшить моделирование рКГч войств не только паровой (газовой) фазы, но и газированной жидкой фазы. И все [c.20]

    Естественно, что. для корректного сравнения различных методов должно использоваться одно и то же уравнение состояния. Чем точнее Зфавнение состояния описьшает фазовое равновесие в системах природных углеводородов и плотности газовой (паровой) и жидкой фаз, тем ближе результаты математического моделирования и экспериментальных исследований рассматриваемого процесса. [c.176]


Смотреть страницы где упоминается термин Моделирование паровой фазы: [c.107]    [c.126]    [c.277]    [c.206]    [c.292]    [c.26]    [c.179]   
Фазовые равновесия в химической технологии (1989) -- [ c.109 ]




ПОИСК







© 2025 chem21.info Реклама на сайте