Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры, низкочастотные колебания теория

    В книге Финча и др. нашли отражение почти все основные аспекты приложений длинноволновых инфракрасных спектров в спектрохимических исследованиях. Значительное внимание уделено экспериментальной технике характеристикам различных спектрометров для дальней инфракрасной области, описанию источников, фильтров, приемников излучения и оптическим материалам. Специальная глава посвящена определению барьеров внутреннего вращения. Значительный объем занимает обсуждение длинноволновых спектров неорганических комплексных систем и металлоорганических соединений. Авторы совершенно правильно подчеркивают необходимость сочетания анализа низкочастотных полос с анализом более высокочастотных и важность использования при интерпретации спектров теории колебаний. Однако именно в этих разделах часто отсутствует критический подход к рассматриваемому материалу и приводится ряд малообоснованных корреляций между частотами, а в некоторых случаях между силовыми постоянными и молекулярными параметрами. Следует отметить, что одно лишь экспериментальное изучение длинноволновых спектров без применения теоретического анализа может оказаться совершенно не достаточным. Дело в том, что низкочастотные полосы поглощения и линии комбинационного рассеяния соответствуют, как правило, нехарактеристическим колебаниям, в которых принимают участие практически все атомы молекулы. Поэтому здесь в значительной степени бесполезно составление корреляционных таблиц между частотами и химическими связями или ограниченными атомными группами. [c.6]


    ЗМ колебаний в кристалле — это связанные колебания. Точное решение задачи о колебаниях решетки достаточно сложно, поэтому найти колебательный спектр кристалла весьма трудно. Однако знать полное решение не всегда необходимо. Дело в том, что наиболее трудные для расчета высокочастотные колебания в кристалле возбуждаются только при высоких температурах, когда все теории теплоемкости дают практически совпадающие результаты. При низких температурах эти степени свободы заморожены и, каков бы ни был вид спектра в высокочастотной области, эуо сравнительно мало сказывается на величине теплоемкости при низких температурах. Тем самым в первом приближении при расчете низкотемпературных теплоемкостей из анализа можно исключить самую трудную часть задачи о колебательном спектре кристаллической решетки. Для низкочастотных колебаний длина волны вели- [c.228]

    ЗМ колебаний в кристалле — это связанные колебания. Точное решение задачи о колебании решетки оказывается очень сложным, поэтому найти колебательный спектр кристалла довольно трудно. Однако знать полное решение не всегда необходимо. Дело в том, что наиболее трудные для расчета высокочастотные колебания в кристалле возбуждаются только при высоких температурах, когда все теории теплоемкостей дают близкие результаты, а при низких температурах эти степени свободы заморожены , и каков бы ни был вид спектра в высокочастотной области, это не сказывается на величине теплоемкости при низких температурах. Тем самым исключается наиболее трудная часть задачи о колебаниях кристаллической решетки, так как низкочастотная часть спектра находится более просто и является одинаковой для самых различных кристаллов. Это связано с тем, что для низкочастотных колебаний длина волны велика по сравнению с параметром решетки, и благодаря этому кристалл при таких колебаниях ведет себя как непрерывная среда. Отличие, связанное с атомной структурой вещества, проявляется только в том, что общее число колебательных степеней равно ЗN, а не является бесконечным. [c.228]

    Таким образом, линейная зависимость теплоемкости от температуры оказывается результатом наложения нелинейно изменяющихся с температурой вкладов от указанных составляющих низкочастотного колебательного спектра макромолекулы. Но в таком случае неправомерно сравнивать экспериментальные данные с расчетами, относящимися лишь к скелетным колебаниям цепи. Это же возражение относится и к теории Лифшица, так как и его расчеты учитывают лишь колебательный спектр скелета макромолекулы. [c.176]


    Корреляционную диаграмму, такую же, как в табл. 5, можно использовать для определения числа и типов колебаний решетки, что более детально будет рассмотрено в следующем разделе. В этом случае две вращательные степени свободы в газовой фазе приводят к дважды вырожденному вращательному состоянию Rxy типа 1. Свободные вращения нельзя рассматривать как колебания свободной молекулы, но в твердом состоянии эти вращения преобразуются в колебании решетки, и поэтому их следует принимать во внимание. Таким образом, в приближении позиционной симметрии следует ожидать появления либрационного колебания типа Е в низкочастотной области спектра КР и ИК-спектра фазы I. Довольно резкий пик при 161 СМ в спектре КР при температуре —90 °С, вероятно, соответствует этому либрационному колебанию [64]. Такой же пик при 149 СМ наблюдается в спектре D N, причем зависимость частоты от момента инерции пропорциональна (/ — момент инерции молекулы). В фазе II следует ожидать расщепления либрационного колебания на две компоненты, однако только одна из них (173 см в спектре H N и 163 см в спектре D N) наблюдалась в спектре КР при температуре жидкого азота. Нет оснований считать, что этот факт обусловлен недостаточностью теории. В данном случае расщепление может быть очень мало или одна из компонент настолько слабая, что ее трудно зарегистрировать. К настоящему времени имеются данные по исследованию ИК-спектров кристаллических H N и D N [67]. Следует подчеркнуть, что молекулярные трансляции также можно включить в корреляционную диаграмму, причем такое включение приведет к появлению трех акустических мод в приближении позиционной симметрии. Поэтому этот эффект (по крайней мере формально) не приводит к трансляционным колебаниям решетки с отличной от нуля частотой. [c.381]

    Предлагаемая вниманию читателей монография является первой в мировой научной литературе книгой, посвященной использованию длинноволновых инфракрасных спектров в химических исследованиях. Само название монографии предполагает выделение низкочастотного интервала (от 10 до 400 см " )в особую спектральную область, отличающуюся от пограничной, более высокочастотной области, которая уже давно используется в химии при решении множества разнообразных задач. Такое разделение колебательного спектра, разумеется, чисто условно и не связано с какими-либо принципиальными соображениями. Инфракрасные полосы, наблюдающиеся как в длинноволновой, так и в обычной инфракрасной области, имеют единую природу и интерпретируются на одной и той же основе — теории колебаний многоатомных систем и электрооптической теории интенсивности. Специальное рассмотрение длинноволновых инфракрасных спектров вызвано главным образом тем обстоятельством, что используемые в этой области дифракционные спектрометры и интерферометры стали доступны для серийных измерений лишь с середины шестидесятых годов. В связи с этим в литературе до сих пор отсутствовал детальный анализ возможностей длинноволновых инфракрасных спектров в решении прикладных задач. Между тем их использование открывает весьма многообещающие перспективы в изучении строения молекул и их взаимодействий. В дальней инфракрасной области находятся собственные колебания водородной связи, колебания связей между тяжелыми атомами, скелетные деформационные и вращательные колебания, особенно чувствительные к пространственному стро- [c.5]

    Описанные в этом разделе приложения механической модели к колебательным спектрам следует рассматривать как начало нового интересного направления. Принимая во внимание исключительную чувствительность частот колебаний к силовому полю, можно полагать, что экспериментальные спектры будут широко использоваться как для определения наиболее выгодных конформаций, так и для уточнения параметров модели атом-атом потенциалов. С другой стороны, механическая модель, позволяющая оценивать элементы матрицы Р, может обогатить теорию колебательных спектров молекул не исключено, что изложенный подход окажется полезным для отнесения частот нормальных колебаний, в особенности для низкочастотной области спектров. [c.254]

    При решении обратной спектральной задачи в случае комплексных соединений, строго говоря, заранее нельзя делать никаких физических ограничений относительно преимущественных значений отдельных силовых постоянных и интервалов их изменения. Задача, следовательно, должна ставиться в самом общем варианте. Однако в этом случае обратная спектральная задача, как правило, вообще не может быть решена однозначно, тем более, что в силу большой массы атомов привычная изотопная методика, применяющаяся при решении обратных спектральных задач для органических соединений, оказывается в комплексах практически неприменимой. Все это приводит к заключению, что при современном состоянии теории колебательных спектров многоатомных молекул какое-либо объективное решение обратных спектральных задач, т. е. определение силовых постоянных, описывающих центральную часть комплекса, вообще невозможно. В свою очередь, это обстоятельство приводит к невозможности хотя бы грубого предвычисления колебательных частот металл — лиганд в случае подавляющего большинства комплексных соединений и почти нацело лишает нас инструмента интерпретации колебательных спектров комплексов в низкочастотной области, где как раз и должны лежать наиболее интересные, с точки зрения химии координационных соединений, частоты колебаний. [c.8]


    Это заставляет нас смотреть на использование низкочастотной части колебательного спектра комплексов довольно скептически, если только развитие теории колебательных спектров, базирующееся на априорных квантовых расчетах силовых постоянных, не позволит проводить численные оценки силовых постоянных металл — лиганд и, следовательно, частот колебаний молекул, хотя бы с точностью до 50 см . [c.9]

    Подобное поведение теплоемкости наблюдается у аморфных SiOa, ОеОг и Se при Т<1 К. Этот эффект приписывают наличию небольшого числа низкочастотных оптических колебаний, обусловленных самой спецификой аморфного состояния. Например, теплоемкость полностью аморфного полиэтилена при низких температурах может быть описана путем комбинации частотного спектра, основанного на теории Тарасова, и малого числа (0,17% повторяющихся единиц) колебаний, имеющих характеристическую температуру 23 К. [c.133]

    Райт исследовал спектры соединений с запахом мускуса и зелени [363], что, однако, не привело к установлению удовлетворительной корреляции между запахом и низкочастотными колебаниями в спектрах молекул. Эти примеры показывают, что Райту не удалось достаточно убедительно подтвердить свою теорию экспериментальными исследованиями. Предположение Райта о диапазоне осмически активных частот постоянно изменялось, и в [c.172]

    Существенный вклад в создание теории релаксационных явлений в полимерах внес Готлиб [62, с. 263, 283], причем наибольшее развитие получили работы, посвященные динамике изолированной цепи (растворы полимеров). В отличие от работ, в которых движение кинетических единиц, содержащих полярные группы, описывается как движение невзаимодействующих диполей с несколькими дискретными положениями ориентации, в работах Готлиба учитывался кооперативный характер переориентации диполей макромолекулы, приводящий к возникновению спектра времен релаксацпи. Расчеты показали, что в гибких карбоцеппых полимерах в растворе диэлектрически активным является кооперативный вид движения, включающий согласованные поворотно-изомерные движения скелета цепи, внутреннее вращение в боковых группах п крупномасштабные низкочастотные крутильные колебания. Предполагается, что подобный механизм двин<еиия диполей имеет место ири высоких температурах в пластифицированных полимерах в условиях ослабленного межцепного взаимодействия. С использованием модели малых колебаний описан процесс установления дипольной поляризации ниже температуры стеклования, который вызван, вероятно, колебаниями дипольных групп вблизи равновесного положения при наличии диссипативных сил, приводящих к релаксационным процессам в переменных полях. Модель малых колебаний рассмотрена в работе [63]. [c.81]

    Теплоёмкость. Информацию (интегральную) о низкочастотном спектре колебаний можно получить из исследований температурной зависимости теплоёмкости решётки. Такие исследования были проведены для изотопов гелия [2], водорода [124], неона [18], азота [125], лития [126-128], молибдена [129], меди [130], германия [131]. Согласно приближённой теории Дебая изохорическая теплоёмкость Су решётки является функцией отношения Т/00. Отсюда в квазигармоническом приближении непосредственно следует универсальное соотношение для теплоёмкостей изотопов  [c.75]


Смотреть страницы где упоминается термин спектры, низкочастотные колебания теория: [c.74]    [c.195]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектры низкочастотные колебания

спектры теория



© 2025 chem21.info Реклама на сайте