Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие сведения о диэлектрической проницаемости

    Создание теории сильных электролитов явилось важным событием в общей теории растворов, которое не могло не оказать определяющего влияния на физическую химию неводных растворов. Возникновению теории сильных электролитов предшествовал ряд важных исследований, которые существенно пополнили сведения и состояния ионов в растворах. Здесь следует прежде всего назвать формулировку закона ионной силы Льюиса — Рендалла (1921 г.) и вывод Борном уравнения для энергии гидратации иона (1920 г.). Последнее уравнение связывает величину энергии гидратации с ионным радиусом и диэлектрической проницаемостью раствора, и с некоторыми допущениями распространяется на неводные растворы. Существенным достижением явился также вывод Бьеррумом уравнения, которое связывало коэффициент электропроводности с осмотическим коэффициентом, активностью растворенного электролита и диэлектрической проницаемостью (1918 г.). [c.13]


    Том I (1962 г.) содержит общие сведения атомные веса и распространенность элементов единицы измерения физических величин соотношения между единицами измерения физических величин измерение температуры и давления математические таблицы и формулы важнейшие химические справочники и периодические издания основные данные о строении вещества и структуре кристаллов физические свойства (плотность и сжимаемость жидкостей и газов, термическое расширение твердых тел, жидкостей и газов равновесные температуры и давления критические величины и константы Ван-дер-Ваальса энергетические свойства теплопроводность электропроводность и числа переноса диэлектрическая проницаемость дипольные моменты вязкость поверхностное натяжение показатели преломления) краткие сведения по лабораторной технике. Имеется предметный указатель. [c.23]

    X. I. ОБЩИЕ СВЕДЕНИЯ О ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ [c.237]

    Ряд сведений по диэлектрической пр01[ицаем0сти веществ можно найти в книге Кларка [64]. Численные значения диэлектрических постоянных индивидуальных веществ н жидком состоянии приводятся в таблицах Мариотта и Смита [165]. Методы измерения диэлектрической проницаемости рассматриваются в главе XXI книги Зайсбергера [1]. Некоторые общие сведения о диэлектрических свойствах органических веществ, в том числе и углеводородов, приведены в обзорной статье Моргана и Иегера [171]. [c.396]

    Для электролиза неорганических соединений пригодно значительно меньше растворителей, чем для электролиза органических соединений, поскольку при этом возникают трудности, связанные с растворимостью. Для этой цели, как правило, подходят лишь растворители с довольно высокой диэлектрической проницаемостью нитрилы с низким молекулярным весом, амиды, сульфоксиды, сульфоны и карбонаты. Однако если растворитель специфически взаимодействует с неорганическим ионом, то полезные результаты могут быть получены даже при электролизе в растворителе с совсем низкой диэлектрической проницаемостью. К таким растворителям относятся уксусная кислота, пиридин, аммиак и этилендиамин. Общие сведения, касающиеся свойств и использования растворителей, фоновых электролитов и электродов сравнения, приведены в работах Такагаши [1], Манна [2] и Батлера [3]. [c.404]

    Сведения о способе и месте локализации субстрата в мицеллах ПАВ были получены по изменению положения максимума и колебательной тонкой структуры УФ-спектров некоторых ароматических солюбилизатов в зависимости от полярности растворителя [64]. Так, спектр поглощения этилбензола в воде существенно отличается от такового в н-октане. Близкое сходство спектров этилбензола в неполярных растворителях и в мицеллярных растворах додеканоата калия, хлористого додециламмония, полиоксиэтилен-(23) додеканола (бриж 35) привело к заключению, что этот субстрат в мицеллах полностью окружен углеводородными цепями ПАВ. Спектры нафталина в растворах тех же детергентов в области 240—300 нм аналогичны спектру в воде, однако полосы при 220 и 310 нм соответствуют полосам поглощения в неполярном растворителе. По характеру спектров в области 240—300 нм следовало бы заключить, что нафталин локализуется в мицеллах так, что его окружает среда с диэлектрической проницаемостью даже более высокой, чем у воды. В то же время полосы при 220 и 310 нм свидетельствуют об обратном. Этого кажущегося противоречия удалось избежать, предположив, что молекула нафталина ориентирована между углеводородными цепями мицеллы таким образом, что часть молекулы находится вблизи полярных групп ПАВ на поверхности мицеллы, а остальная часть молекулы нафталина погружена в неполярное углеводородное ядро. Так же были интерпретированы спектры антрацена и т/ анс-азобензола. В противоположность этому спектры диметилфталата в воде и мицеллярных растворах имеют много общего и сильно отличаются от спектров в неполярных растворителях. Поэтому полагают, что диметилфталат солюбилизуется на поверхности мицелл [64]. Простота метода УФ-спектроскопии делает его особенно привлекательным в такого рода исследованиях. К недостаткам метода следует отнести необходимость достаточно полного отнесения полос спектра и понимания причин их изменения. При интерпретации приходится также принимать, что почти весь солюбилизат находится в мицеллярной фазе, а не в объеме растворителя. [c.232]



Смотреть главы в:

Физика полимеров -> Общие сведения о диэлектрической проницаемости




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2025 chem21.info Реклама на сайте