Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние специфических взаимодействий с растворителем

    Неоднократно предпринимались попытки, опираясь на физические параметры растворенных веществ и растворителей, рассчитать относительные энергии конформеров в растворе с тем, чтобы разработать теоретические методы или математические модели, способные предсказывать влияние растворителей на конформационное равновесие [83, 88, 182, 188, 190, 192, 196— 198]. Для этой цели использовали квантовохимические расчеты (см. например, работу [198]), методы статистической механики и молекулярной динамики (см., например, работу [182]), методы прямого расчета диполь-дипольных взаимодействий (см., например, работу [83]), а также методы реакционного поля, базирующиеся на теории Онзагера [199] о поведении биполярных молекул в конденсированной фазе (см., например, работы [83, 88, 188, 190, 194, 197]). В общем случае эти методы позволяют количественно описать влияние растворителей на конформационное равновесие в отсутствие специфического взаимодействия растворителя с растворенным веществом. [c.173]


    ВИДНО, что эта математическая модель нуждается в серьезной доработке с тем, чтобы в ней были учтены и другие факторы, например обратная поляризация растворенного вещества собственным реакционным полем, влияние квадрупольного момента молекул растворенного вещества на реакционное поле [197] и т. п. В теории реакционного поля игнорируются и специфические взаимодействия растворителя с растворенным веществом, проявляющиеся, например, в растворителях-ДВС. С более детальным обсуждением этой проблемы читатель может ознакомиться в работах [83, 182]. [c.174]

    ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА КОНФОРМАЦИОННЫЕ ПЕРЕХОДЫ В ПОЛИПЕПТИДНЫХ ЦЕПЯХ 26. Влияние специфических взаимодействий с растворителем [c.329]

    Согласно уравнению (4-1), коэффициент активности слагается из двух величин, одна из которых коэффициент активности переноса 7<. Эту величину можно рассматривать как результат специфических взаимодействий между растворенным веществом и растворителем, а также неспецифических (электростатических) эффектов, обусловленных разницей диэлектрических проницаемостей. В этом разделе рассмотрены электростатические эффекты, а в следующем — влияние специфических взаимодействий. [c.74]

    При изучении спектров поглощения органических соединений в растворителях различной полярности обычно наблюдается влияние природы растворителя на положение, интенсивность и форму полос поглощения [1—4]. Причина этих эффектов заключается в том, что взаимодействия между молекулами растворенного вещества и растворителя (в том числе ион-дипольные, диполь-дипольные, индуцированного и постоянного диполей, водородные связи и т, д.) прежде всего изменяют разность энергий между основным и возбужденным состояниями поглощающих частиц, содержащих хромофор. Влияние среды на спектры поглощения можно изучать, сравнивая спектры в газовой фазе и в растворе или в нескольких растворителях различной природы. Поскольку в больщинстве случаев регистрировать спектры поглощения в газовой фазе не удается, то в этой главе будет рассматриваться только второй метод изучения. Такой подход представляется вполне оправданным, поскольку в последние годы появляется все больше данных, свидетельствующих о непрерывном изменении спектральных характеристик при переходе от изолированных молекул (газовой фазы) к слабо или сильно взаимодействующим жидким средам, если только отсутствуют специфические взаимодействия типа ДЭП/АЭП или образование водородных связей [3]. [c.403]


    Следует, однако, признать, что на основании данных о величине ПЭК не всегда можно предсказать, будет ли растворяться полимер в данной жидкости. Причиной этого является тот факт, что во многих случаях влияние специфического взаимодействия преобладает над влиянием теплоты смешения. При подборе растворителя следует иметь в виду, что полимер нерастворим в растворителе, ПЭК которого очень сильно отличается от ПЭК полимера (если только не имеет места специфическое взаимодействие), однако неправильно было бы утверждать, что полимер всегда растворим в жидкости с близким ПЭК- В табл. 1 приведены значения б для различных растворителей и полимеров. В табл. 2 перечислены некоторые растворители для наиболее распространенных полимеров. [c.19]

    Специфическое взаимодействие в ряде случаев выдвигает энтропийные изменения как движущую силу процесса. В связи с этим нами были предприняты исследования для учета влияния специфического взаимодействия ионных ассоциатов со средой при постоянстве структурных параметров, как часть решения общей задачи о связи между термодинамическими характеристиками экстракции и структурой ионного ассоциата. Рассмотрена экстракция кристаллического фиолетового рядом одноатомных спиртов (рис. 1 и 2) с целью выяснения влияния природы растворителя на термодинамику экстракции. [c.414]

    Выше рассмотрена дифференциация веществ одинаковой химической природы, но обладающих различными константами ионизации. В развитии методов анализа многих функциональных групп очень важно ликвидировать влияние на дифференциацию образцов противоположной химической природы по сравнению с природой определяемого вещества. Специфическое определение третичных аминов ацетилированием первичных и вторичных аминов и последующим кислотно-основным титрованием — пример метода, в котором присутствуют оба типа посторонних влияний. При взаимодействии первичного или вторичного аминов с уксусным ангидридом образуется 1 моль амида и 1 моль уксусной кислоты. Присутствие амидов в высокой концентрации может мешать определению третичных аминов вследствие их основности. Образующаяся уксусная кислота может мешать из-за кислотности. Оба типа посторонних влияний могут быть ликвидированы путем соответствующего подбора реакционной среды и среды для титрования. Для установления различия между аминами и амидами предпочитают использовать дифференцирующие растворители, такие, как ацетонитрил. Такие растворители препятствуют также помехам, возникающим вследствие кислотности уксусной кислоты. [c.28]

    Природа растворителя оказывает большее влияние на скорость реакции, чем на константы равновесия при взаимодействии анионов с ионами карбония. Это значит, что протекание этих реакций определяют специфические взаимодействия растворителя с переходным состоянием, отличные от взаимодействий, которые происходят в основном состоянии. Исходя из этого, можно также предположить, что перестройка сольватной оболочки вносит непосредственный вклад в свободную энергию активации этих процессов [70]. [c.82]

    Поскольку внешняя поверхность кристаллов цеолита неоднородна, участки, расположенные вблизи катионов, то есть окна, будут наиболее активны по отношению к молекулам, способным к специфической адсорбции. При этом дисперсионные взаимодействия на таких участках ослаблены. Поэто 1у с ростом полярности и способности к специфическим взаимодействиям с поверхностными активными центрами увеличивается влияние химической природы растворителя на сорбцию углеводородов. [c.288]

    Влияние растворителя на электропроводность прежде всего складывается из влияния его вязкости, диэлектрической проницаемости и специфического взаимодействия с ионами. Силы вязкости растворителя тормозят движение ионов. Диэлектрические свойства среды влияют на эффективную напряженность (электрического) поля и межионный потенциал. Последние величины влияют не только на скорость ионов, но и на притяжение между разноименными ионами и, следовательно, на степень их связывания в пары. Специфическая сольватация ионов может оказывать воздействие как на подвижность, так и на ассоциацию. [c.12]

    Одним из важнейших обстоятельств, часто приводящих к отсутствию простой корреляции между влиянием растворителя на реакцию и его диэлектрической постоянной, является специфическое взаимодействие реагентов с молекулами растворителя, т. е. специфическая сольватация. В качестве примера в табл. 21 приведены относительные константы скорости нуклеофильного замещения галогенов в п- [c.169]

    Так же как и при рассмотрении равновесных процессов, при выводе уравнений, связывающих скорость процесса с диэлектрической проницаемостью, предполагалось, что растворитель — химически индифферентная среда. Однако химические (специфические) взаимодействия растворенного вещества с растворителем оказывают громадное влияние на скорость химической реакции. Влияние ЭТО часто бывает настолько велико, что диэлектрическая проницаемость растворителя отходит на второй план, а то и вовсе не сказывается. Здесь для иллюстрации этого положения можно обойтись одним, зато достаточно выразительным, примером. Реакция дегидробромирования пентабромэтана пиридином [c.81]


    Уже отмечалось, что в случае колебательных спектров паров и газов полосы поглощения имеют вращательную структуру, образующуюся в результате наложения вращательных энергетических уровней на колебательные. В жидком состоянии и растворе вращательная структура исчезает, так как вращение сильно затруднено. (Молекулы с малыми моментами инерции, находящиеся в неполярных растворителях, должны, по-видимому, иметь неквантованное вращение [146].) По сравнению с узкими линиями все полосы поглощения имеют контуры, симметричные относительно центрального максимума со слабыми крыльями в обе стороны. Факторами, оказывающими влияние на распределение интенсивностей в газах [223], являются естественная ширина ЛИНИН, возникающая из-за затухания излучения, эффект Доплера, ударное уширение и специфические межмолекулярные взаимодействия. В конденсированных фазах контуры полос обусловлены главным образом столкновениями ближайших соседей и специфическими взаимодействиями. Иногда важное значение приобретают также изотопное расщепление, резонанс Ферми и горячие полосы (стр. 151). [c.150]

    При исследовании сдвигов, происходящих под действием растворителей, целесообразнее использовать спектроскопию высокого разрешения для изучения данного вещества в смеси двух растворителей, взятых в разных соотношениях [25]. Если влияние растворителя — простая функция свойств объема (например, диэлектрической постоянной), то частота и интенсивность будут плавно изменяться по мере изменения состава растворителя. В то же время если имеют место специфические взаимодействия с молекулами растворителя, то должны наблюдаться две полосы, интенсивности которых изменяются с составом растворителя. [c.178]

    Для объективной оценки реакционной способности порфиринов и металлопорфиринов по отношению к различным по природе молекулам большое значение имеет наличие достоверных термодинамических характеристик процессов молекулярного комплексообразования. Информацию о термодинамике процессов специфических взаимодействий в растворах порфиринов в основном получают при помощи спектроскопических методов (ЯМР, ПМР, ЭСП) [4]. Однако обобщение термодинамических результатов, полученных различными спектроскопическими методами, приведенное авторами в обзоре [4], свидетельствует о трудностях, с которыми зачастую сталкивается исследователь при попытке выяснения четкой взаимосвязи структуры и биохимической активности металлопорфиринов. Решение данных вопросов осложнено рядом причин, обусловленных методологическими особенностями. Например, необходимостью проведения исследований на фоне "инертных" растворителей, влияние которых на растворенное вещество, как правило, нуждается в уточнении нерешенностью вопросов о стандартизации термодинамических величин из-за отсутствия данных по активностям компонентов раствора недостаточной чувствительностью методов к сольватным структурам при достижимых концентрациях порфиринов в растворах. Следствием этого являются существенные расхождения в термодинамических характеристиках, полученных разными авторами с использованием спектроскопических методов для одинаковых систем [4]. Необходимо отметить, что в большинстве случаев анализ экспериментальных данных по процессам аксиальной координации в трехкомпонентных системах металлопорфирин-молеку-лярный лиганд-растворитель невозможен без привлечения сведений об особенностях сольватации реагентов данным растворителем, которые, как правило, в научной литературе отсутствуют. [c.299]

    Здесь п — показатель преломления растворителя. Оба уравнения, которые нашли довольно широкое применение и были проверены на большом числе соединений [136—144], оказались справедливы только в случае разбавленных растворов в неполярных растворителях, где. можно пренебречь специфическими взаимодействиями. Если же Av измеряли в полярных растворителях, то расчеты по уравнению Кирквуда—Бауэра— Магата обычно дают чрезмерно большие величины Av/v . Отклонения от этого уравнения приписывались влиянию водородных связей и образования молекулярных комплексов, т. е. таких взаимодействий, которые не учитываются моделью Кирквуда—Бауэра—Магата. [c.455]

    Существенное влияние на спектры ЭПР нитроксильных радикалов оказывает растворитель, который специфически взаимодействует не только с нитроксильным фрагментом [14], но и с другими функциональными группами радикала. Это оказывает влияние на внутримолекулярные взаимодействия в радикале и на кинетическую устойчивость нитроксильных радикалов. [c.159]

    Следует отметить, что на невозмущенные размеры может оказывать некоторое влияние и природа растворителя. В ряде случаев специфическое взаимодействие с растворителем изменяет подвижность атомных групп в боковых привесках полимерных молекул и равновесные невозмущенные размеры клубков в тета-раст-ворителе, т. е. изменяет характер близкодействия в полимерной цепи. [c.404]

    Влияние специфической сольватации па положение равновесия между ионами и ионными парами пока количественно учесть невозможно. Однако, если рассматривать растворитель в качестве изотропного бесструктурного диэлектрика, то можно получить выражение для константы диссоциации ионных пар Кц или константы ассоциации ионов в ионную пару К . Если доминирующим в ионной паре является кулоновское взаимодействие, то обычно для расчета этих констант используют [4] уравнение [c.250]

    Это выражение чисто электростатического характера и оно ограничено в том отношении, что не учитывает ни влияния специфических взаимодействий, ни диэлектрического насыщения. Подобно уравнению Борна, выражение (4-26) может быть использовано лишь для получения приближенных значений величины д. На рис. 4-2 представлена предсказанная линейная зависимость между константой образования соли (определяемой по данным электропроводности) и величиной, обратной диэлектрической проницаемости растворителя [50]. Из рис. 4-2 видно, что в растворителях с низкой диэлектрической проницаемостью константы диссоциации невелики. На практике электролиты типа 1 1 при концентрации М и выше в воде, а в других растворителях с диэлектрической проницаемостью менее 40 при концентрациях выше 10 М диссоциированы не полностью. Даже в воде электролиты типа 2 2 не полностью диссоциированы, несмотря на сильные специфические взаимодействия между растворенным веществом и растворителем и высокую диэлектрическую проницаемость. Согласно представлениям Грюнвальда и Киршенбаума [51], можно считать, что при обычных аналитических концентрациях основные частицы, присутствующие в растворе, — это ионные пары, если константа диссоциации меньше 10 , и свободные ионы, если константа выше 10 . [c.82]

    Что касается второго фактора, то необходимость учитывать его влияние возникает главным образом в тех случаях, когда в работе используются растворители, обладающие электронодонорными или электроноакцепторными свойствами, например такие, как бензол, диоксан и т. п. Последние могут образовывать молекулярные соединения определенного состава с одним или несколькими компонентами реакции (П.1). В литературе рассматривается две альтернативные модели специфического взаимодействия растворителя с компонентами исследуемой реакции. Согласно первой реакция комплексообразования представляется как мультиплетное равновесие, где наряду с основной реакцией [c.49]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Существенный вклад в теорию, способствующий выяснению причин специфического влияния различных ионов на коэффициенты активности других электролитов, был сделан Бренстедом [48] до появления теории Дебая и Гюккеля. Па основе его исследований растворимости высоковалентных соединений кобальта в растворах различных солей была создана так называемая теория специфического взаимодействия ионов . Основной постулат теории Бренстеда сводится к тому, что в разбавленных растворах солей с постоянной общей концентрацие различные ионы подвергаются одинаковому воздействию со стороны ионов того же знака . Специфическое электростатическое взаимодействие между ионами в разбавленных растворах возникает лишь тогда, когда ионы противоположного заряда приближаются друг к другу настолько, что может проявиться это специфическое влияние. Кроме эффекта взаимодействия ионов, Бренстед учитывал также явление высаливания , т. е. влияние растворителя. Так как большинство исследований, подтверждающих теорию специфического взаимодействия ионов, было выполнено со смесями двух электролитов, то эта теория будет подробно рассмотрена в гл. XIV, посвященной свойствам таких смесей. [c.365]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Адсорбционные исследования термодинамических закономерностей процессов адсорбции водорода на поверхности скелетного и пористого никеля из бинарных растворителей диметилформамид-вода, метанол-вода различного состава и тех же растворителей с добавками гидроксида натрия показали, что природа растворителя не оказывает влияния на число индивидуальных форм водорода, связанных поверхностью катализатора. Однако, под влиянием природы и состава растворителя изменяются количественные соотношения между величинами адсорбции индивидуальных адсорбционных форм. Так, введение в воду алифатических спиртов повышает величины адсорбции слабосвязанных молекулярных, а апротонного ди-метилформамида - стабилизирует на поверхности катализатора прочносвя-занные атомарные формы адсорбированного водорода. Добавки гидрок-сида натрия в целом повышали долю прочносвязанных атомарных форм, хотя при низких концентрациях щелочи на поверхности катализатора возрастали количества молекулярно адсорбированного водорода. Доказано существенное влияние специфических сольватационньгх взаимодействий растворителя с активными центрами поверхности скелетного никеля на характер энергетического распределения адсорбированного водорода. [c.137]

    На реакции нуклеофильного замещения, подобно любой по.1, р-ной реакции, оказывает влияние растворитель, хотя степень эмдо злпяния может изменяться от реакции к реакции. Вообще гоы и, в процессе химической реакции образование нонов возможно ко в том случае, если оии сольватируются. Для грубой оЦ м ки сольватациониых свойств растворителя можио использовать - к диэлектрическую проницаемость. Однако последняя — макрг I пическая величина, тогда как специфическое взаимодействие М1 к-ду растворителем и растворенным веществом происходит в с- -ре действия сил межмолекулярного притяжения и отталкивания. [c.242]

    Проведенное исследование позволило выяснить некоторые закономерности образования л-л-комплексов природных металлопорфиринов. Данные по физико-химическим характеристикам выявленных молекулярных комплексов (табл. 6.1.3) свидетельствуют о значительных различиях в способности MPf к специфическим взаимодействиям с бензолом, связанных, очевидно, с влиянием электронной структуры центрального атома металла и функциональных заместителей. Как было показано ранее [5], введение металла создает благоприятные условия для л-л-комплексообразования. Например, 2пТРР образует с СбНй устойчивый молекулярный комплекс состава 1 2, в котором обе молекулы растворителя энергетически равноценны, в то время как со-308 [c.308]

    Если допустить, что влияние неэлектростатических эффектов и специфических взаимодействий между растворителем и растворенными веществами мало, то зависимость g k ko) от параметра Кирквуда (ег—1)/(2егН-1) графически может выражаться прямой. Соответствующие графики представлены на рис. 5.13 и 5.14 для бинарных смесей и чистых растворителей соответственно. Как показывают эти данные, между lg(fe/ o) и (е —1)/(2ег+ - -1) не существует простой зависимости, применимой в случае всех изученных растворителей и их смесей. Как показывают представленные на рис. 5.13 данные, эта зависимость для каждой бинарной смеси выражается своей кривой с характерной кривизной, а в чистых растворителях (рис. 5.14) корреляция между lg( /feo) и (ег—1)/(2ег+1) носит весьма приближенный характер. В протонных растворителях скорость сольволиза оказалась намного выше расчетной (вычисленной на основе величин диэлектрической проницаемости соответствующих раствори- [c.289]

    Колебательный спектр молекулы А—В определяется не только прочностью связи между А и В на характер спектра оказывают заметное влияние также различные факторы окружения молекулы. Межмолекулярные взаимодействия влияют на различные характеристики ИК-спектров, индуцируя изменение волнового числа, интенсивности и полуширины полос поглощения. Типичным примером могут служить два участка ИК- пектра 1,1-дихлорэтена, представленные на рис. 6.8. При повышении полярности среды одна полоса поглощения [vas( H2)] смещается в сторону меньших, а другая [у(СНг)] — в сторону больших волновых чисел. Вместе с тем усиление взаимодействий растворителя с растворенным веществом сопровождается повышением интенсивности поглощения и увеличением полуширины обеих полос. Очевидно, специфическое и неспецифическое взаимодействия растворителя с растворенным веществом по-разному влияют на два типа колебаний в молекуле 1,1-дихлорэтена. [c.448]

    Изложенное выше обсуждение основано на предположении, что во всех растворителях не связанные в пары ионы идентичны, а различный характер ассоциации должен определяться особыми свойства-ми ионной пары и растворителя в ее непосредственной близости, С другой стороны, обсуждение проблемы ассоциации можно было начать с рассмотрения контактных ионных пар в растворе. Интересно выяснить, почему такие пары в различных растворителях диссоциируют по-разному. Очевидно, что одним из факторов, определяющих степень диссоциации контактных пар, является диэлектрическая проницаемость, Другой важный фактор - свободная энергия сольватации ионов, которая определяется специфическим взаимодействием ионов с растворителем [97]. Джилкерсон, рассматривая ассоциацию ионов, формально учел влияние этих факторов [97 а]. Знание свободной энергии переноса ряда солей из одного растворителя в другой представ- [c.39]

    Влияние растворителя. В полярных растворителях специфическое взаимодействие растворенного вещества с растворителем становится явным, и характеристические частоты групп вещества очень существенно изменяются при переходе от одного растворителя к другому. Это влияние растворителя следует учитывать в тех случаях, когда требуется сравнить данные, полученные в различных растворителях. Частоты групп отличаются по своей чувствительности к замене одного растворителя другим (см. табл. 4.2, 4.3). Различные колебания сравнительно неполярной олефиновой группировки филлокладена мало меняются при перемене растворителя, но валентная частота v( H) кислого водорода фенил ацетилена значительно понижается в эфирном растворе это обусловлено образованием водородной связи (II) с молекулами растворителя, что приводит к некоторому удлинению связи С — Н. Фенол и пиррол (III) ведут себя точно так же (см. табл. 4.3, формулу [c.141]

    Развитию основных положений теории удерживания препятствовал тот факт, что в зависимости от условий основное влияние на удерживание и селективность может оказывать одно из перечисленных ниже явлений (илн совокупность этих явлений) [260] 1) "сольвофобные" взаимодействия между анализируемым веществом и органическими группами на поверхности 2) "силанофильные" взаимодействия между анализируемым веществом и доступными силанольными группами на поверхности сорбента 3) взаимодействие между сорбентом и анализируемым веществом, растворенным преимущественно в органическом модификаторе элюента такой процесс наблюдается и в НФ ЖХ при расслаивании раствортеля 4) специфические взаимодействия с определенными компонента.ми растворителя (вторичные равновесные процессы) 5) явления эксклюзии вследствие стерических или электростатических эффектов. [c.74]

    Специфика рассмотренных нами полимерных адгезивов во многих случаях определяет особенности системы адгезив — субстрат, а в итоге — адгезионную прочность. Вторичные структурные образования, возникаюш ие уже в умеренно концентрированных растворах полимеров, обусловливают не только специфический характер адсорбции полимеров на твердых поверхностях, но и вообш,е особенности взаимодействия макромолекул с различными субстратами. Так, развернутая форма полимерной цепи способствует улучшению условий взаимодействия полимера с поверхностью, а глобулярная препятствует созданию достаточно большого числа контактов и иногда не позволяет достичь высокой адгезионной прочности. В ряде случаев (например, нри использовании плохого для данного полимера растворителя) макромолекулы полимера, несмотря на способность к специфическому взаимодействию с твердой поверхностью, все-таки не адсорбируются на субстрате и проявляют повышенную склонность к струк-турообразованию. В растворах или дисперсиях некоторых полимеров конформация макромолекул зависит от pH. Обнаружено также влияние pH на прочность адгезионной связи [114]. [c.380]

    На невозмущенные размеры цепей полимеров (табл. 1.27) некоторое влияние может оказывать природа растворителя. Специфическое взаимодействие с растворителем изменяет подвижность атомных групп в боковых заместителях полимерных молекул и, следовательно, невозмущенные размеры клубков в 0-растворителях, т. е. влияет на блнзкодействие в цепи (табл. 1.28—1.32). [c.117]

    Описанные выше эффекты влияния микроструктуры цепи на кинетику полимераналогичных и внутримолекулярных реакций носили в основном качественный характер, и величины соответствующих констант скоростей оценивались кинетическим методом на стерически возможно более чистых моделях — специально синтезированных синдиотактических и изотактических образцах. При этом всегда остается вопрос, а не проявляются ли одновременно с этим и другие эффекты, а именно — конформационные изменения, специфическое взаимодействие полимер — растворитель, наконец, влияние соседних прореагировавших групп и т. п. С этой точки зрения количественные данные, полученные кинетическим методом для оценки стереохимического эффекта, могут оказаться не всегда правильными, хотя, как нам представляется, качественная картина при этом получается вполне надежная. [c.40]


Смотреть страницы где упоминается термин Влияние специфических взаимодействий с растворителем: [c.134]    [c.153]    [c.275]    [c.68]    [c.134]    [c.394]    [c.460]    [c.154]    [c.302]    [c.315]    [c.318]   
Смотреть главы в:

Конформации макромолекул -> Влияние специфических взаимодействий с растворителем




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие ион растворитель

Взаимодействия специфические

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте