Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая постоянная значение

    Диэлектрическая постоянная. Значения, полученные при опре- делении диэлектрической постоянной при различных температурах,, приведены в табл. 16. [c.63]

    Свойства и реакции 2-аминоэтансульфокислоты и ее производных. Как отмечено выше, таурин обладает слабо выраженными кислотными свойствами. Определение константы ионизации дало различные величины, причем два более новых значения [170] составляют 1,8-10" и 5,77-10 . Водные растворы таурина имеют диэлектрическую постоянную выше, чем у воды, причем она увеличивается пропорционально концентрации раствора 171]. Аналогичное действие оказывают другие солеобразные соединения, в которых положительные и отрицательные ионы, присутствуя в одной молекуле (двухполярные ионы), создают постоянные диполи. В кислом растворе таурин чрезвычайно устойчив к действию окисляющих агентов. Он не вступает в реакцию с серной кислотой, кипящей азотной кислотой, царской водкой или сухим хлором [172]. Однако при сплавлении таурина с углекислым натрием и азотнокислым калием сера полностью превращается [c.134]


    Ниже приведены значения диэлектрической постоянной ряда жидкостей, чаще всего используемых в химии в качестве растворителей. [c.31]

    Данные Сааля и сотрудников 1421 показали, что диэлектрическая проницаемость битумов с увеличением температуры возрастает. Эти данные были получены при эффективной напряженности поля 20 ОСО В/см и частоте 50 Гц при температурах от 5 до 100 °С. В указанных пределах диэлектрическая постоянная принимает значения от 2,5 до 3,3. Это величины того же порядка, как и полученные Вальтером [48] для четырех битумов при температурах от 10 до 150°С. Диэлектрическая проницаемость каменноугольного пека больше, чем у битумов, и в пределах О—120 °С возрастает с 3 4 до [c.44]

    Емкость двойного слоя. Двойной слой может рассматриваться как плоский конденсатор, у которого переменными являются расстояние между обкладками и диэлектрическая постоянная. Значение емкости двойного слоя во многих случаях помогает судить о строении поверхности электрода. Как мы уже упоминали [уравнение (5)], емкость можно вычислить из результатов электрокапиллярных измерений. Однако этот способ недостаточно точен, так как емкость является второй производной поверхностного натяжения по потенциалу. Более точные данные получаются при непосредственном измерении емкости с помощью переменного тока или при вычислении емкости по наклону кривых заряжения, как упомянуто на стр. 609. [c.732]

    Эти три фактора известны как электронная, атомная и молекулярная составляющие диэлектрической постоянной. Значение этих трех составляющих факторов может быть определено отдельно путем измерения диэлектрической постоянной вещества как функции частоты поля. Электроны имеют малую массу и поэтому могут реагировать на частоты, более высокие, чем видимый свет. 6  [c.83]

    Методы состоят в определении диэлектрической постоянной влажного угля. Эта величина является весьма чувствительной, так как ее значение примерно в 30 раз больше для воды, чем для сухого угля [64]. [c.62]

    Серная кислота обладает значительно большей протонодонорной активностью, чем фтористоводородная — для 100%-ных кислот на два порядка. Диэлектрическая постоянная серной кислоты также гораздо выше. Однако уровень значений диэлектрических [c.179]

    Верхний предел температур во всех случаях является максимальной температурой, при которой была измерена диэлектрическая постоянная. Данные табл. 1.5 и рис. 1.2 показывают, что битум №9 является единственным из данной серии продуктов, для которого величина В при температуре выше 70 °С имеет положительное значение. В указанной области температур этот битум ведет себя как обычная полярная жидкость. [c.45]


    Сернистые соединения из ароматических фракций удаляются путем перевода их в кислородные соединения окислением перекисью водорода но Гинсбергу [34] с последующим отделением на силикагеле [35]. Кислородные соединения обладают намного л более высокими значениями диэлектрической постоянной, чем соответствующие им по строению сернистые соединения (например, для амилмеркаптана =4,7, а для амилового спирта =15,8), поэтому при хроматографии на силикагеле они будут адсорбироваться вместе со смолистыми соединениями и ароматическая фракция будет десорбироваться без сернистых компонентов. [c.27]

    Молекулы высших алканов (Л Ю) представляют собой почти свободное сочленение двух более коротких цепей. Каждая такая цепь участвует в реакциях переноса водородных связей С-Н...С независимо от остальной части молекулы. Диэлектрическая релаксация и процессы перестройки структуры жидких алканов при П 9-1.0 не зависят от длины углеводородной цепи. Этим можно объяснить практически постоянное значение времени релаксации в высших алканах, а также, то, что значение /1// оказывается близким к значению 4// н-пентана. Wo TpY высших алканов не равно tpj н-пентана. По-видимому, время релаксации, наблюдаемое в наших опытах, определяется константой скорости лимитирующей реакции, т.е. той, в которой участвует наиболее длинный участок молекулы, > [c.172]

    В некоторых эмульсиях В/М капли имеют -потенциал, равный 100 мв, так что мог ожидаться первый электровязкостный эффект. Однако эмульсии (Ф == 0,03—0,33), содержащие различные эмульгаторы и имеющие -потенциалы от 15 до 100 мв, нри применении уравнения (IV.206) к данным вязкости (Альберс, 1957) дали примерно одно и то же значение а . Величина первого электровязкостного эффекта, полученная по уравнению (1У.250), равна — 1%. Таким образом, эффект был мал в системах с низкой диэлектрической постоянной. В эмульсиях В/М толщина двойного электрического слоя составляет несколько микрометров, так что в более концентрированных эмульсиях мог ожидаться второй электровязкостный эффект. Но так как двойной слой является очень диффузным, увеличение вязкости, вызванное последним эффектом, должно было бы быть также малым. [c.297]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Из уравнения следует, что любое изменение диэлектрической постоянной среды существенно влияет на проводимость раствора. Эта сторона проводимости имеет чрезвычайно важное значение для объяснения электропроводности неводных растворов, [c.195]

    В соответствии с большими значениями диэлектрической постоянной легче всего ионы образуются в воде и серной кислоте. Наоборот, в таких неполярных растворителях, как бензол, гексан, диоксан, толуол, четыреххлористый углерод,ионы образовываться в заметном количестве не могут и в таких растворителях с гетеролитическими процессами практически не приходится иметь дела. [c.26]

    Если поляризующее поле колеблется с высокой частотой, то из-за инерции постоянных диполей они не успевают следовать за колебаниями поляризующего поля. Поэтому постоянные диполи не оказывают никакого влияния на молярную рефракцию (свет представляет собой высокочастотное электромагнитное поле). При частотах 10 Гц (длина волны 10—100 см, т. е. область дециметровых волн) возбуждается также и ориентационная поляризация . Такое возбуждение зависит от внутреннего трения среды и в твердых телах вообще не наблюдается. Дипольные моменты молекул газа можно непосредственно определить из уравнения Дебая, измерив температурную зависимость диэлектрической проницаемости. Значения и и (г нахо- [c.100]

    Полярность любого растворителя может быть охарактеризована значением его диэлектрической постоянной (ее еще называют диэлектрической проницаемостью). Она показывает, во сколько раз притяжение или отталкивание между двумя электрическими [c.83]

    Таким образом, скорость окисления здесь не зависит от концентрации окислителя, т. е. имеет нулевой порядок по [Fe( H)a] и 1-ый порядок по тиоацетамиду и ОН -ионам. Однако при низких концентрациях окислителя стадия (2) — лимитирующая и тогда, для расчета скорости реакции следует использовать уравнение (7). Лимитирующая стадия (2) включает взаимодействие двух отрицательно заряженных ионов, поэтому в соответствии с уравнением (XIV,33) скорость этой реакции возрастает с увеличением ионной силы раствора (в частности, при введении 1<С1 в реакционную смесь), а также при увеличении диэлектрической постоянной среды (XIV,36). Поскольку скорости окисления тиомочевины и тиоацетамида очень чувствительны к концентрации щелочи, кинетику этих реакций изучают при постоянном значении pH и реакцию проводят в присутствии карбонат-бикарбо-натной буферной смеси , которая поддерживает pH 11. [c.389]


    Диэлектрическая постоянная. Значения диэлектрической постоянной перекиси водорода и ее водных расгаоров даны н та бл. 11. [c.57]

    Электрическое смещение D. Поток смещения Ф . Электри ческое поле силы (силоиых. -iv.imfi/ M ) вызывает в диэлектрике (изоляторе) электрическое смещение D (линий смэще-ния/сл ), величина которого О — еД( . В электромагнитной системе единиц Д = 1/4В практической системе единиц Д ]0я/4м = = 8,859 Ю " [F/сл]. (с — скорость света)-, Д — диэлектрическая постоянная ) е —относительная диэлектрическая постоянная. Значения s табл. 8, стр. 720 и табл. 11, стр. 942 и 943. [c.718]

    Хотя реакции кислотно-основного катализа нроте1 ают в водных средах, но для смешанных водно-органических растворителей разница в значениях диэлектрической постоянной может быть весьма существенной вследствие широкого интервала значений органических компонентов. Например, для водорастворимых органических соединений  [c.41]

    Следует отметить, что изменение диэлектрической постоянной среды может также сказываться на значениях кажущейся энергии активации в случае катализа слабыми кислотами или основаниями либо прп реакциях в водно-органических средах. Это обусловлено тем, что зависимость от температуры выражается уравненпем  [c.42]

    Диэлектрическая постоянная плотного пара, равная 5 т-20, еще достаточно В1елика, чтобы вызвать диссоциацию растворенных в нем веществ. Такой пар может полностью смешиваться с неполярными летучими соединениями. Диэлектрическая постоянная пара плотностью 0,2 г/см при 800°С равна 2,2. Она близка к диэлектрической постоянной бензола —2,3. Ниже приводятся значения диэлектрической постоянной некоторых орга-ничёских соединений  [c.23]

    Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов (например, ионов натрия). Проводимость быстро увеличивается с ростом температуры. Диэлектрическая постоянная стекла зависит от природы модификатора. Например, введение оксида свинца в стекло повышает это значение с 4 до 10. Большое влияние на эксплуатационную долговечность оказывает термостойкость стекол. Термостойкость определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлажцениЕ в воде (0°С). Для большинства видов стекол термостойкость колеблется от 90 до 170 0, а для кварцевого стекла она составляет 800-1000°С. [c.14]

    В растворителе с большой диэлектрической постоянной (для пиридина е = 12,3) значения молекулярных масс зависят от концентрации (рис. 9). Экстраполяция данных, полученных в пиридине, на бесконечное разбавление, дает значение 18O0, что соизмеримо со значением, полученным в нитробензоле [303] криоскопиче-ски и эбулиоскопически [305] (табл. 36). [c.151]

    Для сильно концентрированного раствора рассчитать величину емкости двойного электрического слоя Сдэс при заданном значении диэлектрической постоянной в этом слоеО. [c.113]

    Электрофоретическая подвижность частиц дисперсной фазы определяется величиной -потенциала. В соответствии с уравнением (III. 16) толщина диффузного слоя, а отсюда и -потенциал уменьшаются с ростом концентрации электролита (при постоянной концентрации потен-циалобразующих ионов и постоянных значениях температуры и диэлектрической проницаемости). [c.93]

    Анализ экспериментальных результатов (рис. 1) показывает, что для безводных сырых нефтей диэлектрическая проницаемость зависит от частоты. Эта зависимость обнаруживается в области частот 50кГЦ-100 МГц, в которой диэлектрическая проницаемость нефтей уменьшается, а затем с частоты 100 МГц остается постоянной, причем для различных нефтей она несколько отличается. Таким образом, в диапазоне частот 50 кГц-100 МГц для нефтей обнаруживается область дисперсии диэлектрической проницаемости и тангенса угла диэлектрических потерь. Значения tg5 для нефтей с ростом частоты сначала уменьшаются, а затем эта зависимость приобретает характер размытой резонансной кривой (рис. 1). Максимальные значения для различных исследованных нефтей находятся вблизи частоты 10 Гц. Такая зависимость диэлектрической проницаемости и тангенса угла диэлектрических потерь обусловливается до частот 10 Гц наличием сквозной проводимости, а в мегагерцовом диапазоне (10 -10 ) Гц — явлениями ориентационной поляризации. Поэтому мы считаем, что такая зависимость 1 5 от частоты вблизи 10 Гц объясняется наличием в нефти тяжелых полярных компонентов, которые имеют область аномальной дисперсии в этом диапазоне. [c.143]

    Это уравнение основывается на модели, по которой подвижная часть двойного слоя мон ет иметь любое распределение (как слой Гуи), по предполагается движение в среде со средним отношением вязкости Г] к диэлектрической постоянной е. Большинство авторов принимают значения этих параметров, равными параметрам воды. Однако другие считают, что вода в области диффузного двойного слоя имеет аномальные свойства вследствие высокой локальной силы поля. Ликлема и Овербек (1961) заключили, что ё, вероятно, не изменяется, а Г) может увеличиваться, но надежные значения вязкоэлектрической константы для воды отсутствуют. [c.101]

    Электрические свойства нефти. Безводные нефть и нефтепродукты являются диэлектриками. Значенне относительной диэлектрической постоянной е нефтепродуктов около 2, что в 3—4 раза меньше, чем у таких изоляторов, как стекло (е = 7), фарфор (е = 5 7), мрамор (е = 8-т- 9). У безводных, чистых нефтепродуктов электропроводность совершенно ничтожна. Это свойство широко иопользуетсл на практике. Так, твердые парафины применяются в электроте.хнической промышленности в качестве изолятора, а специальные нефтяные масла (трансформаторное, конденсаторное) — для заливки трансформаторов, конденсаторов и другой аппаратуры в электро- и радиопромышленности. Высоковольтное изоляционное масло С-220 используется для наполнения кабелей высокого давления. Во всех перечисленных случаях нефтяные масла применяются для изоляции токонесущих частей и отчасти для отвода тепла. [c.49]

    Толщиномеры электропроводящего слоя. Вихретоковые толщиномеры целесообразно применять для контроля электропроводящих слоев толщиной не более 5-10 мм. Эги приборы особенно эффективны для измерения толщин до 0,3 мм как правило, их применяют для контроля неферромагнитных слоев. Существуют одно-, двух - и трехпараметровые толщиномеры. Однопараметровые приборы практически не применяют из-за больших погрешностей, вызываемых влиянием вариации зазора (даже при плотном притяжении ВТП). Из двухпараметровых приборов наиболее широко применяются толщиномеры для контроля толщины стенок труб и аппаратов го неферромагнитных материалов с малой удельной электрической проводимостью. Погрешность толщиномера не превышает допустимой лишь при постоянном значении удельной электрической проводимости объекта. Микропроцессорный вихретоковый толщиномер ВТ-51НП предназначен для контроля диэлектрических покрытий на деталях из немагнитных металлов (рисунок 3.4.20). В толщиномере используется микропроцессор, благодаря которому введено кнопочное управление установкой нуля и верхнего предела, упрощающее процесс подготовки к работе  [c.178]

    Ряд сведений по диэлектрической пр01[ицаем0сти веществ можно найти в книге Кларка [64]. Численные значения диэлектрических постоянных индивидуальных веществ н жидком состоянии приводятся в таблицах Мариотта и Смита [165]. Методы измерения диэлектрической проницаемости рассматриваются в главе XXI книги Зайсбергера [1]. Некоторые общие сведения о диэлектрических свойствах органических веществ, в том числе и углеводородов, приведены в обзорной статье Моргана и Иегера [171]. [c.396]

    Диэлектрическая проницаемость имеет важное значение во всех случаях, когда заряды различного знака разобщены средой со свойствами диэлектрика. Таким образом, если какое-либо вещество используется в качестве изолятора, то его изолирующие свойства в известной мере характеризуются величиной диэлектрической постоянной. Свойства растворов электролитов также в значительной степени зависят от величины диэлектрической проницаемости растворителя. Во все уравнения теории растворов сильных электролитов обязательно входит величина диэлектрической проницаемости. Нахгонец, знание величины диэлектрической проиидаемости пег.бходнмо для вычисления дипольного момента (см. стр. 411). [c.404]

    Поведение диэлектрика в переменном электрическом поле обусловлено его поляризацией, величина и направление которой изменяются вслед за изменением напряженности электрического поля. Поскольку величина диэлектрической постоянной обусловлена поляризацией полимера в электрическом поле, большие ее значения характерны для полярных полимеров, к числу которых из эластомеров относят полихлоропрены, бутадиен-нитрильные и фторкауг[уки. [c.74]

    Значение диэлектрической постоянной для чистой воды равно 81.-Это значит, что по сравнению с вакуумом (диэлектрическая постоянная которого принята равной единице) в воде в 81 раз слабее силы взаимного притяжения или отталкивания между двумя электрическими зарядами. По этой причине взаимодействие между двумя одноименио заряженными ионами протекает в воде быстрее, чем в растворе спирта, диэлектрическая постоянная кото рого значительно меньше, чем воды. Другими словами, в растворе спирта силы отталкивания между одноименно заряженными ионами значительно сильнее, поэтому и скорость их взаимодействия ниже. [c.91]

    Диэлектрическая постоянная смеси может быть больше, чем каждой из жидкостей, входящих в ее состав. Например, при 0°С для воды е = 88,3 для пероксида водорода Н2О2 е = 89,2, а для 36%-ной смеси пероксида водорода с водой е= 120. Диэлектрические постоянные жидкостей зависят от температуры с повышением температуры они уменьшаются. Так, для воды имеем следующие значения е  [c.84]

    С уменьшением диэлектрической постоянной силы межионного взаимодействия резко возрастают, вследствие чего граница применимости теории Дебая—Онзангера отодвигается в область еще более разбавленных растворов. Критерием применимости теории Онзангера является линейность функции X—/(]/со), которая экспериментально была обнаружена Кольраушем. Опытная проверка показала, что коэффициент к в уравнении Онзангера соответствует экспериментальному его значению, полученному Коль-раущем на обширном экспериментальном материале. [c.410]


Смотреть страницы где упоминается термин Диэлектрическая постоянная значение: [c.223]    [c.96]    [c.226]    [c.232]    [c.389]    [c.35]    [c.40]    [c.588]    [c.221]    [c.36]    [c.36]    [c.83]   
Физическая биохимия (1949) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая постоянная



© 2025 chem21.info Реклама на сайте