Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия гидратации ионов

Таблица 2.2. Относительные (—=0, —, =0, —АОн+ =0) теплоты, энтропии и энергии гидратации ионов Таблица 2.2. Относительные (—=0, —, =0, —АОн+ =0) теплоты, энтропии и <a href="/info/10861">энергии гидратации</a> ионов

    Из табл. 2.1 видно, что если в ряду гидроксидов щелочных металлов принять энергию гидратации иона цезия равной нулю, то от- [c.49]

    НС1+Н.О НзО++С1-, при котором протон переходит от молекулы НС1 к молекуле Н2О с образованием иона гидроксония. Кроме того, образовавшиеся ионы Н3О+ и 1 вступают в ион-дипольное взаимодействие с избыточными молекулами воды. Таким образом, при образовании раствора соляной кислоты энергия, необходимая для разрыва химической связи И— I (она составляет 432 кДж/моль), компенсируется энергией связи протона с молекулой воды в ионе гидроксония и энергией гидратации ионов Н3О+ и С1 . [c.21]

    Расчет теплот и энергий гидратации ионов по методу непрерывной среды [c.53]

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]

    Модельные методы расчетов энергий гидратации ионов [c.56]

    Растворимость солей в воде определяется разностью энергии кристаллической решетки и энергии гидратации ионов. Это малая разность двух больших величин пока не может быть рассчитана [c.235]


    При таком допущении энергия активации должна быть функцией энергии гидратации ионов и работы их выхода из металла, возрастая с увеличением разности между ними. На основании этого следовало бы ожидать, что для инертных металлов энергия гидратации больше, а работа выхода меньше, чем для нормальных металлов. Однако имеющиеся данные (см. табл. 22.3) не подтверждают такого предположения так, для цинка и никеля значения энергии гидратации и работы выхода почти одинаковы, но цинк выделяется со значительно меньшим перенапряжением, чем никель. Это отнюдь не означает, что прочность ионов в растворе и в металле не играет никакой роли, ее просто нельзя учесть подобным примитивным способом. [c.465]

    Недостаточность такой упрощенной картины следует и из более общих соображений. Стандартные электродные потенциалы изменяются параллельно с изменением разности между химической энергией гидратации ионов в растворе и работой удаления ионов из. [c.465]

    Очевидно, что энергия гидратации ионов металлов должна быть больше значения рабочей функции. Сопоставляя данные, приведенные в табл. 1, можно сделать вывод, что энергия гидратации для большинства металлов значительно больше рабочей функции и вероятность перехода ион-атомов из металлической решетки в раствор электролита весьма велика. [c.14]

    Химия бериллия, соединения которого в основном ковалентны (разд. 36.7.2), очень напоминает химию алюминия (диагональное сходство)..С другой стороны, меньшие различия ионных радиусов кальция, стронция и бария очень часто обусловливают -общность реакций этих элементов. Меньший радиус иона Mg2+ -служит, например, причиной значительной растворимости сульфата (большая энергия гидратации иона Mg +), малой растворимости гидроксида (деформация поляризуемого иона ОН ) ж низкой температуры разложения карбоната магния по срав-ьяению с карбонатами кальция, стронция и бария (сильная де- [c.600]

    В соответствии с ходом изменения /ион можно было бы ожидать, что в ряду напряжений левее всех щелочных металлов должен располагаться цезий, правее — литий. Наблюдаемое на опыте высокое значение лития обусловлено большой энергией гидратации иона Ь1+. [c.198]

    Литий по химической активности уступает некоторым металлам, хотя значение его стандартного электродного потенциала наиболее отрицательное (Е1 =—3,01 в). Это обусловлено большой энергией гидратации иона что обеспечивает смещение равновесия [c.588]

    При Аш<Аь, когда энергия связи ионов в кристаллической решетке металла меньше энергии гидратации ионов в растворе, металл заряжается отрицательно, а раствор положительно. При равновесии, имеющем динамический характер, скорости прямого и обратного процессов равны. [c.416]

    Большая диэлектрическая проницаемость воды не является единственной причиной ее высокого ионизирующего действия. Дипольный характер молекул воды, обладающих неподеленными электронными парами, обусловливает ее значительную способность к образованию гидратированных ионов за счет донорно-акцептор-ного взаимодействия, а выделяющаяся при этом энергия гидратации ионов компенсирует, часто с избытком, энергию, необходимую для преодоления сил электростатического притяжения ионов в кристаллической решетке вещества. [c.22]

    Из рис. 18 следует, что поверхностная активность анионов галоидов растет в ряду F < l
частично связано со снижением энергии гидратации ионов по мере увеличения их радиуса. Менее гидратированные ионы получают возможность ближе подойти к поверхности, вследствие чего создаются условия для возникновения сил специфического взаимодействия анионов и металла. При достаточно отрицательных потенциалах в результате электростатического отталкивания происходит десорбция анионов и а, -кривые в растворах, содержащих одинаковую концентрацию общего катиона, совпадают (см. рис. 18). [c.42]

    Из рис. 18 следует, что поверхностная активность анионов галоидов растет в ряду р" < С1" < Вг <с I . Возрастание адсорбции в этом ряду частично связано со снижением энергии гидратации ионов по [c.48]

    С1"<Вг < 1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и электрокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. УП.9). [c.176]

    Пользуясь методом термодинамических циклов, используя теоретически и экспериментально установленные зависимости между энергией кристаллической решетки и свойствами ионов в качестве основы расчетов, а также энергетические характеристики атомов и ионов, А. Ф. Капустин-ский и К. Б. Яцимирский разработали единый прием энергетической характеристики ряда процессов образования комплексных ионов, и в частности таких важных величин, как энергий образования комплексных ионов в вакууме, протонного сродства, энергии гидратации ионов и т. д [c.159]


    Растворы отделены друг от друга пористой (керамической) перегородкой, препятствующей их смешению, но обеспечивающей прохождение электрического тока. Такой элемент был сконструирован русским электрохимиком Б. С. Якоби. На обоих электродах образуются двойные электрические слои. Величина и знак электрических зарядов в двойных слоях определяются работой удаления электрона из металла и энергией гидратации его ионов. Б раствор будут легче переходить те металлы, у которых меньше работа выхода электронов и больше энергия гидратации ионов, т. е. менее благородные металлы. Так как цинк менее благороден, чем медь, то он зарядится более отрицательно по сравнению с медью. Если электроды соединить проводником, то электроны будут перемещаться от цинка к меди. При этом ионы цинка уходят из двойного слоя в объем раствора, а электроны, перешедшие на медный электрод, разряжают ионы меди. [c.156]

    Экспериментальные данные о тенлотах и энергиях гидратации ионов [c.158]

    Энергии гидратации ионов рассчитывались по уравнению [c.158]

    Как следует из данных Приложения 11, теплоты и энергии гидратации ионов близки между собой. [c.158]

    В той же таблице приведены значения реальных энергий гидратации ионов, найденные Матсудой и Натойя (1980). Таблица составлена на основе расчетов Рандлса с использованием определенной им величины вольта-потенциала металл — раствор 1/м, г.. [c.63]

    Так как все величины в правой части уравнения экспериментально определимы, то уравне11не (2.22) позволяет найти реальную энергию гидратации иона М-+. [c.64]

    И можно найти из сравнения реальных и химических энергий гидратации ионов. Сопоставление АСг(р) по Матсуде с по Измайлову (см. табл. 2.4) для семи ионов, Вг , Сц2+, С1 , Ь1+, К+ и КЬ- - показывает, что Хы,о= ионов, но [c.64]

    Чтобы отчетливее показать большое значение процессов гидратации, можно обратиться к процессу растворения ионного кристалла, например хлористого калия. Мы знаем, что даже простое растирание соли в порошок требует затраты значительного количества энергии. Очевидно, для разделения соли на отдельные ионы необходимо затратить много больше энергии. Для хлористого калия это количество энергии составляет 170 ккал моль. Откуда же при растворении хлористого калия в воде берется такое большое количество энергии для отрыва ионов от кристалла В основном этот процесс осуществляется за счет энергии гидратации ионов. Для хлористого калия эта энергия составляет (см. табл. 37) примерно 81+84 = 165 ккал1моль и, следовательно, действительно покрывает большую часть энергии, необходимой для выделения ионов из кристалла. Остающиеся 170 — 165 = 5 ккал/моль покрываются за счет энергии теплового движения и растворение сопровождается поглощением теплоты из окружающей среды. [c.386]

    Когда ионы металла переходят в раствор (энергия гидратации ионов достаточна для разрыва связи между ион-атомами и электронами), на поверхности металла остается эквивалентное количество электронов (рис. 7), которые в раствор не переходят и сообщают металлу отрицательный заряд. 3)тот заряд вызывает электростатическое притяжение между положительно заряженными ионами металла, нерешедщими в раствор, и поверхностью металла. Указанные явления на границе металл — водный раствор электролита приводят к возникновению двойного электрического слоя, образуемого электрическими зарядами, находящимися на металле, и ионами противоположного заряда, располагающимися у поверхности металла в растворе, что приводит к установлению некоторой разности потенциалов между металлом и раствором электролита (рис. 8, а). [c.15]

    Очевидно, что экзотермичностъ обеи.х стадий обусловлена тем, что иергня гидратации нонов железа превосходит энергию ионизации ато.мов железа, а энергия ионизации атомов меди превосходит энергию гидратации ионов ме.ти. Суммарное уравнение реакции взаимодействия. железа с раствором соли меди, очевидно, выглядит так  [c.200]

    Для КС1 эта величина составляет 711 кДж/моль. При растворении такое большое количество энергии получается главным образом за счет энергии гидратации ионов (339+ + 351=690 кДж/моль). Разница в 21 кДж/моль покрывается за счет энергии теплового движения молекул. Растворение в этом случае сопровождается охлаждением раствора. В других случаях энергия гидратации может превышать энергию кристаллической решетки (например, для Li l). Тогда при растворении происходит нагревание раствора. Аналогичные явления наблюдаются при растворении электролитов в других полярных растворителях. [c.178]

    Для КС эта величина составляет 711 кДж/моль. При растворении такое большое количество энергии получается главным образом за счет энергии гидратации ионов (339-Ь351 = = 690 кДж/моль). Разница в 21 кДж/моль покрывается за счет энергии теплового движения молекул. Растворение в этом случае [c.147]

    Изменение формы электрокапиллярных кривых при переходе от поверхностно-неактивного электролита (NaF) к растворам, содержащим специфически адсорбирующиеся анионы ( h, Вг , 1 ), показано на рис. 55. Специфическая адсорбция анионов на незаряженной поверхности ртутного электрода проявляется в снижении электрокапиллярного максимума, а возникновение скачка потенциала между слоем специфически адсорбированных анионов и притянутыми к ним катионами — в сдвиге потенциала нулевого заряда в отрицательную сторону по сравнению с =о в растворе NaF. Как видно из рис. 55, специфическая адсорбция галоидных ионов растет в ряду Е <С]--<Вг -<1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и элект-рокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. 55). [c.153]

    Определениед чисел сольватации и выяснением структуры растворов не исчерпывается вопрос о сольватации. Следует не только установить, какое число молекул воды присоединяется к иону и какие изменения происходят в структуре растворителя, но и установить, каковы энергетические изменения при взаимодействии между ионом и молекулами растворителя. Чтобы произошло растворение соли, нужно преодолеть взаимодействие между ионами, т. е. преодолеть энергию кристаллической решетки. Энергия, выделяющаяся при растворении соли, равна разности между суммой энергии гидратации ионов и энергией кристаллической решетки  [c.153]

    Обычно данные об электродвижущих силах используются для подсчетов реальных свободных энергий гидратации ионов, отличающихся от химических энергий сольватации на величину работы, производимой при переносе ионов через поверхность раствора, потенциал которой ф С/п = = Лидр + [c.164]


Смотреть страницы где упоминается термин Энергия гидратации ионов: [c.223]    [c.340]    [c.459]    [c.23]    [c.119]    [c.200]    [c.200]    [c.201]    [c.75]    [c.18]    [c.26]    [c.26]    [c.30]    [c.31]    [c.163]    [c.308]   
Краткий справочник физико-химических величин (1974) -- [ c.0 ]

Краткий справочник физико-химических величин Издание 6 (1972) -- [ c.16 , c.56 ]

Краткий справочник физико-химических величин Издание 7 (1974) -- [ c.16 , c.56 ]

Кинетика реакций в жидкой фазе (1973) -- [ c.110 ]

Биофизика Т.2 (1998) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация ионов

Ионы энергия,

Энергия гидратации

Энергия ионов



© 2025 chem21.info Реклама на сайте