Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы с высокой диэлектрической проницаемостью

    Если требуется материал с низким значением тангенса угла диэлектрических потерь и особенно с низким значением диэлектрических потерь, то, очевидно, следует выбрать пенопласт, хотя этот материал может оказаться совершенно непригодным с других точек зрения, например из-за низкой механической и электрической прочности. Если же, напротив, требуется материал с высокой диэлектрической проницаемостью (например, для конденсаторов), полимеры вообще могут оказаться непригодными, так как высокие значения диэлектрической проницаемости у полимеров обычно сопровождаются большими значениями тангенса угла диэлектрических потерь, особенно в области высоких частот и температур. [c.140]


    Об ионизирующей способности растворителя можно судить по электрической проводимости образующегося раствора. Накопленный экспериментальный материал показывает, что наряду с водой хорошо ионизирующими свойствами обладают и другие жидкости с высокой диэлектрической проницаемостью. Из неорганических жидкостей, кроме уже упомянутого жидкого аммиака, высокой диэлектрической проницаемостью обладают жидкий фтороводород, циановодород и пероксид водорода, из органических —К-замещенные амиды, например, диметилформамид Н—С—Ы(СНз)а. [c.406]

    Полезно сопоставить свойства поливинилхлорида и полиэтилена в связи с различиями в их структуре. В поливинилхлориде имеется более сильное межмолекулярное взаимодействие, обусловленное присутствием в цепи атомов хлора, что приводит к получению более твердого и жесткого материала с гораздо более высокой температурой стеклования. Кроме того, из-за влияния атомов хлора поливинилхлорид значительно полярнее полиэтилена и обладает более высокой диэлектрической проницаемостью. Рентгеноструктурные данные показывают, что степень кристалличности поливинилхлорида очень мала (5%) и что промышленный полимер имеет почти целиком атактическую структуру с лишь небольшими включениями коротких синдиотактических сегментов. Опытами по восстановлению промышленного поливинилхлорида было также установлено наличие у него значительной, хотя и переменной по величине, степени разветвленности. [c.259]

    Полистирол, благодаря сохранению малых значений диэлектрической проницаемости и тангенса угла диэлектрических потерь при воздействии высоких частот, нашел широкое применение для изготовления высокочастотных деталей (панели электронных ламп, каркасы катушек, основания конденсаторов и др.). Детали из полистирола могут изготовляться путем литья под давлением, выдавливанием (шприцеванием), а также механической обработкой пластин и блоков. В электротехнике нашли применение полистироловые лаки для пропитки и покрытия различных катушек и других деталей. Полистирол может применяться также в виде пористого материала. [c.119]

    Поликарбонаты обладают высокими механическими свойствами. Особый интерес представляют пленки из этого материала. Они отличаются большой гибкостью, прочностью на разрыв и стабильностью размеров при действии нагрузок, допускают длительную эксплуатацию при 130° С. Водопоглощение их ничтожно мало. Имеют высокую электрическую прочность (около 155 кв1мм). Электроизоляционные характеристики мало меняются от частоты. Диэлектрическая проницаемость при 50 гц и [c.263]


    Ситаллы обладают высокой механической прочностью и термостойкостью, водоустойчивы и газонепроницаемы, характеризуются низким коэффициентом расширения, высокой диэлектрической проницаемостью и низкими диэлектрическими потерями. Они применяются для изготовления трубопроводов, химических реакторов, деталей насосов, фильер для формования синтетических волокон, в качестве футеровки электролизных ванн и материала для инфракрасной оптики, в электротехнической и электронной промышленности. [c.57]

    Полученные данные наряду с ранее опубликованными позволяют утверждать, что подавление экстракции микроэлементов — явление широко распространенное и в отличие от соэкстракции может играть положительную роль для улучшения полноты отделения микроэлементов. Поэтому для отделения радиоактивных изотопов без носителя от материала облученной мишени, очистки веществ, а также при экстракционном концентрировании элементов-примесей, осуществляемом путем извлечения эле-мента-основы, целесообразно применять экстрагенты с высокой диэлектрической проницаемостью. [c.147]

    Гексагональный нитрид бора прекрасный изоляционный материал, его диэлектрическая проницаемость в 1,5—4 раза выше диэлектрической проницаемости лучших глиноземов. Его коэффициент термического расширения имеет очень низкую величину, поэтому материал в состоянии выдерживать сильные тепловые удары. Нитрид бора обладает высокой теплопроводностью, которая незначительно понижается с повышением температуры. При высокой температуре он сохряняет свои механические свойства. Спрессованные из него изделия обладают консистенцией мела или слоновой кости и легко поддаются обработке обычными резцами. Подобно графиту порошок BN обладает смазочными свойствами, которые улучшаются при высокой температуре. В инертной или восстановительной атмосфере (например, в атмосфере Н2 или аргона, или сухого N2) он может применяться вплоть до температуры 2800 °С. В окислительной атмосфере предельные температуры его применения колеблются в зависимости от плотности между 900 и 1400 °С. Он не смачивается многими металлами и жидкостями А1, Na, Si, Sn, u, I, Bi, Sb, d, криолитом, хлоридами ш,елочных металлов. [c.267]

    Поскольку измерение поляризационных токов сопряжено с определенными трудностями, сопротивление обычно рассчитывают как частное от деления напряжения на ток, измеренный через некоторое время после включения напряжения - сквозной ток. Последний возникает из-за наличия примесей или ионизации вещества, которая может возникнуть при воздействии различных факторов - света, рентгеновского излучения, повышенной температуры и др. В общем случае материалы с высокой диэлектрической проницаемостью при прочих равных условиях более легко диссоциируют на ионы, чем материал с низкой диэлектрической проницаемостью. Влага способствует увеличению диссоциации примесей и снижению сопротивления. [c.12]

    Отсюда следует, что сопротивление парафинизации стенок оборудования повышается с увеличением полярности покрытия (о степени полярности вещества можно судить по его диэлектрической проницаемости). Высокую диэлектрическую проницаемость имеют материа-лы большей полярности. [c.12]

    Поглощение сверхвысоких частот используется для определения содержания воды в терпингидрате и в некоторых других фармацевтических препаратах. Бензар и Юдицкий [11] показали возможность применения этого метода для контроля качества продукции в промышленности. Интересная спектроскопическая методика, предложенная Фельнер-Фельдегом [30а], основана на измерении отражения прямоугольных импульсов длительностью от 30 ПС до 200 НС, что соответствует частотам от 1 МГц до 5 ГГц. С помощью этой методики в течение долей секунды можно измерить в тонких слоях изучаемого материала значения диэлектрической проницаемости, соответствующие низким и высоким частотам, времена релаксации и диэлектрические потери. Леб и сотр. [57а] развили этот метод, обеспечив возможность измерения диэлектрических проницаемостей в области высоких частот (10 МГц — 13 ГГц). С помощью разработанной аппаратуры можно измерять диэлектрические характеристики твердых и жидких веществ относительно воздуха. В работе [57а] приведены данные для полярных жидкостей, в том числе для спиртов и водных растворов сахаров. Те же авторы предложили применять при описанных измерениях электронно-вычислительную машину, обеспечивающую сбор и обработку экспериментальных данных и Фурье-преобразование получаемых спектров. Новый импульсный метод нашел применение для определения влаги в молочных порошках. Кей и сотр. [44а ] приводят методику измерений, включающую следующие операции 1) из порошка готовят шарик массой 63 мг 2) взвешивают образец и помещают его в коаксиальную воздушную линию 3) измеряют высоту импульса с помощью осциллоскопа с градуированной шкалой, аналогового или цифрового вольтметра, двухкоординатного самописца или автоматической системы обработки данных 4) устанавливают соотношение между высотой импульса и массой воды в образце. [c.510]


    Улучшение распыления лакокрасочных материалов при введении ПАВ связано с тем, что в результате адсорбции ПАВ на поверхности частиц пигментов или наполнителей образуются коллоидные частицы, обладающие ограниченной электрической подвижностью и способные к ионизации. Ионизация обеспечивается присутствием полярных растворителей с высокой диэлектрической проницаемостью, молекулы которых концентрируются вокруг заряженных частиц лакокрасочного материала. Образующиеся крупные частицы с большим зарядом одного знака окружены более мелкими частицами с противоположным зарядом (противоионами), имеющими высокую подвижность. [c.164]

    Из (V.29) следует, что при измерениях непроводящих или плохо проводящих жидкостей для получения высокой чувствительности необходимо увеличивать емкость i и отношение l/ o. Практически увеличение емкости l достигается применением для стенок сосуда материала с большой диэлектрической проницаемостью и малой толщиной, а также электродов, имеющих большую площадь. Увеличение отношения i/ q достигается увеличением расстояния между стенками сосуда ячейки. Последнее удобно еще и тем, что приводит к линейной зависимости Сэ от 2, особенно для жидкостей с низкой диэлектрической проницаемостью. [c.263]

    Порообразующие полимеры содержат вещества — порофоры, способные при нагревании, разлагаясь, выделять газы. Чаще всего это органические соединения, выделяющие азот. Из-за выделения газа полимер вспенивается, и в нем образуются закрытые поры, равномерно распределенные по всей массе материала. Газы уменьшают диэлектрическую проницаемость материала, что имеет существенное значение в области высоких частот. [c.31]

    В качестве материала для изоляции электрических проводов и кабелей полипропилен пока еще не получил широкого признания, несмотря на то, что обладает высокими диэлектрическими свойствами и малой проницаемостью для паров воды. По всей вероятности, это связано с тем, что полипропилен, как каждый новый изоляционный материал, сначала должен выдержать длительный испытательный срок. [c.301]

    Исходя из общих принципов проявления вяжущих свойств [81], можно предположить, что насыщенный раствор кристаллогидрата может играть роль связки. При смачивании порошкообразного материала таким раствором часть растворителя (воды) будет адсорбирована на поверхности частичек, что приведет к пересыщению и далее к кристаллизации раствора. Способствовать кристаллизации будет пониженная растворяющая способность адсорбированной воды (диэлектрическая проницаемость пленочной воды 2—5). Учитывая высокие исходные значения Т/Ж (10/1), можно ожидать, что кристаллизация гидрата приведет к заметному упрочнению образцов. Однако, как показывает эксперимент, прочность таких образцов невысока и часто имеет тот же порядок, что и прочность образцов, отформованных на воде. Вместе с тем имеют место случаи, когда прочность образцов, отформованных на насыщенных растворах кристаллогидратов, в 2—3 раза больше прочности образцов, отформованных на воде. [c.109]

    Поливинилхлорид (—СНг—СНС1—) — жесткий, негибкий продукт полимеризации винилхлорида. Жесткость его обусловлена сильным межмолекулярным взаимодействием (водородным и ориентационным), возникающим из-за наличия в цепных макромолекулах атомов электроотрицательного хлора. Полярный диэлектрик, эксплуатируемый в области низких частот, характеризуется высокими диэлектрическими потерями (1 6 = 0,15— 0,05) и меньшим по сравнению с полиэтиленом удельньгм объемным сопротивлением (10 Ом-м). Диэлектрическая проницаемость 3,2—3,6. Используют его в производстве монтажных и телефонных проводов. Для придания полимеру эластичности его пластифицируют, т. е. вводят специальные добавки, чаще всего сложные эфиры и полиэфиры с низкой степенью полимеризации. Однако при этом ухудшаются электроизоляционные свойства материала. [c.478]

    В общем случае введение в емкостный преобразователь контролируемого объекта или материала вызывает перераспределение зарядов на электродах, которое вызывает уменьшение емкости от краевого эффекта на фоне увеличения основной составляющей. Это связано с втягиванием силовых линий электрического поля в области с более высокими значениями диэлектрической проницаемости. [c.589]

    Можно заключить, что высокие значения диэлектрической проницаемости могут быть обусловлены поляризацией только диффузной части ДС и что имеющийся экспериментальный материал не требует привлечения гипотезы об особом поведении связанных ионов, приписываемом им Шварцем. Измерения низкочастотной дисперсии диэлектрической проницаемости и электрофоретической подвижности на одном и том же объекте открывает возможность совместного определения и 0-потенциалов. [c.106]

    Систематическое изучение оксидных соединений висмута со слоистой структурой и высокой диэлектрической проницаемостью и керамических материалов на их основе предпринято в [451]. Показано, что диэлектрическая проницаемость >1000 может быть достигнута в керамическом материале состава Pb4BI4Ti7024. Это позволяет использовать его для изготовления высоковольтных емкостей. Диэлектрические свойства этой керамики могут быть улучшены при ориентации зерен в направлении, перпендикулярном осям поляризации. Такого рода керамика с ориентированными зернами имеет преимущества для использования в качестве емкостного материала. [c.314]

    Интересный материал дает химия растворов фторидов ксенона в инертных растворителях. Предполагается, что химический обмен между связанным фтором и фторид-ионами в растворе будет значительным и должен увеличиваться с ростом степени переноса заряда (т. е. ХеРг > Хер4 > ХеРе). Диссоциация ХеР на XeP+ j и р-становится возможной в растворителях с высокой диэлектрической проницаемостью или в растворителях, где молекулы растворителя образуют связи с растворенными соединениями (например, НР в НР) (ср. стр. 337 и 366). [c.487]

    На рис. IV.18 представлен принципиальный вид преобразователя с перемещающимся в осевом направлении изолированньш электродом J. Изолированный от жидкости электрод 2 неподви жен. Полная эквивалентная схема такой системы подобна пред ставленной на рис. 11.11 или 11.12. Конфигурация преобразовав теля позволяет делать стенки сосуда 4 из материала с низкой диэлектрической проницаемостью, а прослойки, изолирующие поверхности электродов от исследуемой среды, — из материала с высокой диэлектрической проницаемостью. Очевидно, основными критериями выбора материала, изолирующего электроды, будет степень зависимости его диэлектрической проницаемости от тем- пературы и стойкость к воздействию среды. Без учета потере [c.98]

    Сульфиды АзаЗз и ЗЬгЗз используют для образования тонких диэлектрических пленок при изготовлении пленочных конденсатрров в микросхемах. По данным некоторых исследователей, именно эти сульфиды являются наиболее технологичным материалом для получения диэлектрических пленок термическим испарением в вакууме, так как высокая упругость их паров достигается при сравнительно низкой температуре (400—500° С). Хорошие диэлектрические свойства в пленках имеет стибнит ЗЬгЗз малую проводимость (4-10 ом-см), значительную диэлектрическую проницаемость (а = 18—20), большую светочувствительность и др. Поэтому его в настоящее время наиболее широко применяют как материал для создания фотопроводящих тонких (2—3 мкм) слоев мишеней передающих телевизионных трубок (видиконов), в которых используется внутренний фотоэффект. Как материалы для изготовления мишеней видиконов интересны некоторые халькогенидные стекла, (гл. IX, 5), селениды мышьяка, сурьмы и их комбинации ЗЬ Зз ЗЬгЗез, АзаЗз-Аз Зез и др. [c.303]

    Политетрафторэтилен в обычных условиях и при повышенных температурах является хорошим диэлектриком [1210—1212]. Так, Чантер [1213] указывает, что в области высоких напряжений из всех видов полимеров только фторопласты и кремнийорганические пластики обладают удовлетворительной стойкостью к образованию проводящих мостиков на поверхности полимерного материала. Как показал Ондрейчик [1240], при испытании в течение шести месяцев при 250° величина диэлектрических потерь (1 6), диэлектрическая проницаемость, сопротивление и электрическая прочность политетрафторэтилена практически не меняются. Результаты испытаний позволяют рекомендовать политетрафторэтилен для изготовления теплостойкой изоляции. проводников, использующихся в авиации, ракетной и электронной технике. [c.409]

    Ориентированный и отформованный материал обладает высокой прочностью. Удельная ударная вязкость его возрастает до 20 кгсм/см с 4 кгсм/см для неориентированных отпрессованных изделий, предел прочности ири изгибе увеличивается до 1000 кг/сл/ вместо 300—400 кг/см для неориентированных. Высокая прочность поливинилкарбазола сочетается с теплостойкостью его до 400°, что позволяет использовать полимер в качестве теплостойкого диэлектрика (вместо слюды) или в качестве заменителя асбеста. Диэлектрические свойства поливинилкарбазола заметпо не изменяются в широком интервале частот и температур. Диэлектрическая проницаемость полимера 3,0, электрическая прочность 50 кв/мм. Удельный вес полимера 1,19. [c.813]

    Следует отметить, что многие магнитные свойства ферритов являются структурно-чувствительными, т. е. сушественно зависят от керамической структуры материала, включая размер и форму кристаллитов, размер, форму и распределение пор. Поэтому проблема изготовления ферритовых керамических материалов с хорошо воспроизводимыми свойствами сводится в значительной мере к получению материалов не только с определенным химическим составом, но и определенной керамической структурой. Более того, получение керамических материалов с воспроизводимыми свойствами является ключевой проблемой материаловедения. Далеко не всегда удается получить материал с необходимым набором свойств, даже если его технология кажется достаточно освоенной, а в процессе изготовления не допущено очевидных технологических промахов. Неудачи особенно часты при получении твердофазных материалов, структура которых формируется в результате топохимических процессов, крайне чувствительных к исходному сырью и способам его переработки. Разумеется, что неприятности значительно усугубляются, когда требования к качеству материалов по тем или иным причинам повышены. Например, технология обычной керамики, используемой в бытовых целях, в свое время была автоматически перенесена на получение специальных видов оксидной керамики,, ъ том числе и магнитных материалов. Напомним, что эта технология включает смешение компонентов керамической массы в мельницах, формование смеси и высокотемпературный обжиг (спекание). Последовательное осуществление этих операций при приготовлении специальной керамики далеко не всегда приводит к успеху. Причины подобных неудач можно рассмотреть на примере получения ферритов с высокой магнитной проницаемостью, в частности марганец-цинковых ферритов состава Мпо,зз2по,б7ре204. Такие ферриты являются основными материалами для создания современных средств магнитной записи с целью высококачественного воспроизведения звука, телевизионных изображений и особенно для регистрации и хранения больших массивов информации. Отметим, что марганец-цинковые ферриты являются наилучшим материалом и для теле- и радиоаппаратуры, так как благодаря исключительно низким диэлектрическим потерям пригодны для изготовления сердечников вторичных источников питания. При их синтезе обычно осуществляют твердофазную реакцию [c.162]

    Вспенивающийся полистирол применяется для производства различных изделий. которые должны обладать низкой теплопроводностью, высокими электрическими показателями (диэлектрическая проницаемость должна быть близка к единице), малыми звукопроводностью, плавучестью, кажущейся плотностью и т. д. Как теплоизоляционный материал он используется при изготовлении промышленных, судовых и домашних холодильников. Из него изготавливают по-Блавки рыболовных сетей, спасательные средства, отсеки лодок и катеров. Он широко применяется в строительстве жилых домов, промышленных и других сооружений в качестве промежуточного слоя в жестких конструкциях плит, для облицовки стен, для изготовления всевозможных декораций, макетов, игрушек и др. [c.105]

    Выбор метода измерения во многом зависит от того, для какой частоты надо получить данные. Поскольку с помощью одного и того же моста можно легко измерять проводимость или потери и емкость или диэлектрическую проницаемость в широком интервале частот, то мост для измерений в твердых веществах обычно наиболее удобен. При измерении диэлектрической проницаемости и потерь в широком интервале частот от 10 до 10 гц можно пользоваться емкостным мостом типа 716-С (фирмы Дженераль рэдио компани ). Мост типа 716- S1 покрывает интервал от 5-10 до гц. Другие мосты работают обычно при фиксированных частотах, но при некоторой их модификации интервал может быть несколько расширен. Интервал частот можно растянуть по крайней мере до 10 гц путем использования резонансного метода, при котором очень высокая точность определений обеспечивается резонансной настройкой контура. При частотах от 5-10 до 6-10 гц используются методы резонирующей полости и волновода. Если физические свойства материала позволяют придать образцу соответствующую форму, то слиток или брусок вещества может быть помещен для измерений в резонирующую полость или волновод [92]. Проводились измерения в широком интервале температур с веществами, которым не удавалось придать точно заданную форму, но которые вплавлялись в измерительную ячейку [85, 117]. Для измерений в миллиметровом диапазоне длин волн могут применяться оптические методы или метод волновода. Хотя для жидкостей эти методы уже дают удовлетворительные результаты [87, 108], в настоящее время их продолжают совершенствовать. [c.630]

    При измерении диэлектрической проницаемости и тангенса угла диэлектрических потерь при переменных частотах и постоянной температуре различные полимеры ведут себя по-разному. Если исследуемый материал обладает очень малым тангенсом угла диэлектрических потерь, например чистый политетрафторэтилен, то и второй параметр оказывается малым и оба не зависят от частоты. Напротив, если исследуются материалы с высокими значениями тангенса угла диэлектрических потерь, например фенольные смолы или поливинилхлорид, то с увеличением частоты наблюдаются сннл ение диэлектрической проницаемости и периодические изменения тангенса угла диэлектрических потерь. Обычно частотные зависи. ости диэлектрической проницаемости и диэлектрических потерь (произведение тангенса угла диэлектрических потерь на диэлектрическую проницаемость) представляют так, как это схематически показано на рис. 69. Максим мы диэлектрических потерь иабл ода.ются при таких значениях частот, при которых происходит наиболее резкое изменение диэлектрической проницаемости. [c.123]


Смотреть страницы где упоминается термин Материалы с высокой диэлектрической проницаемостью: [c.92]    [c.101]    [c.101]    [c.248]    [c.191]    [c.248]    [c.127]    [c.148]    [c.248]    [c.257]    [c.51]    [c.280]    [c.280]    [c.281]    [c.633]   
Смотреть главы в:

Новое в технологии соединений фтора -> Материалы с высокой диэлектрической проницаемостью




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Проницаемость материала



© 2025 chem21.info Реклама на сайте