Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Продукты глубокого окисления циклогексана

    При недостаточном перемешивании концентрация кислорода в разных точках жидкости в каждый момент времени различна. В этом случае вблизи поверхности пузыря реакция будет идти в кинетической области, а в глубине жидкости в диффузионной, т. е. окисление фактически будет проходить не во всем объеме жидкости В результате при заданной степени конверсии циклогексан только частично будет окисляться глубоко, что приведет к уменьшению выхода полезных продуктов Правда, это возможно не только при плохом перемешивании жидкой фазы, но еще и при неравномерном распределении пузырей газа по поперечному сечению аппарата [c.49]


    Процесс ведется таким образом, чтобы конверсия циклогексана за проход составляла 15—20%, при этом выход смеси циклогексанола и циклогексанона достигает 60—75%, а суммарный выход продуктов (включая X-масло), способных при дальнейшем окислении азотной кислотой превращаться в адипиновую кислоту, достигает 80—85% на превращенный цикло-гексап. При увеличении конверсии выход этих продуктов снижается. Циклогексан, отгоняющийся в процессе окисления, ноступает в конденсатор 5 и перед возвращением в автоклав проходит через сепаратор 4, где отделяется от воды, образовавшейся в процессе реакции, так как накопление воды в системе тормозит реакции окисления. Реакционная смесь из автоклавов поступает в ректификационную колонну 6, с верха которой отводится неокисленный циклогексан вместе с сопутствующими ему углеводородными примесями и летучими продуктами глубокого окислення (главным образом муравьиная и уксусная кислоты). Органические кислоты удаляются из смеси нри промывке водой в скруббере 7, после чего циклогексан ректифицируется в колонне 8, где в виде азеотропной смеси от него отделяются бензол и другие углеводородные примеси. Этот способ очистки позволяет применять в качестве сырья циклогексан нефтяного происхождения, в котором, кроме бензола, содержатся метилциклопентан, к-гексан и другие углеводороды, накопление которых в смеси при рециркуляции циклогексана ухудшает условия окисления. Освобожденный от этих примесей циклогексан возвращается в цикл окисления. [c.681]

    Исследование состава, свойств и молекулярных весов смол и асфальтенов, выделенных из тяжелых остаточных продуктов высокотемпературной и окислительной переработки нефти (крекинг-остатки, окисленный и остаточный битум, гудрон и др.), показало, что они заметно отличаются от первичных смол и асфальтенов, выделенных из сырых нефтей [31—35]. Смолы, выделенные из отбен-зипенной и откеросиненной нефти, из 50%-ного мазута, гудрона, крекинг-остатка, окисленного битума, характеризовались более низкими молекулярными весами, чем смола, выделенная из сырой нефти. То же самое относится п к молекулярным весам асфальтенов, выделенных из тяжелых остатков переработки нефти. Причем молекулярные веса смол и асфальтенов, выделенных из тяжелых нефтяных остатков, тем ниже, по сравнению с молекулярными весами первичных смол и асфальтенов, выделенных из сырых нефтей, чем более глубокой химической переработке нефть подвергалась. Несмотря на более низкие значения молекулярных весов вторичных, т. е. претерпевших химические изменения, смол и асфальтенов, по сравнению с первичными, растворимость их в органических растворителях ухудшается. Так, например, первичные асфальтены растворимы в циклогексапе, а асфальтены, выделенные из тяжелых остатков высокотемпературной переработки нефти, наоборот, нерастворимы в циклогексане. Это применяется в аналитической практике для разделения первичных и вторичных нефтяных асфальтенов. [c.84]


    Гидрированию подвергали 20%-ные растворы продуктов в циклогексане в лабораторных автоклавах емкостью 20 мл при температуре 300 15°С и давлении 300—400 ат (начальное давление ЮО—150 ат) в присутствии никеля Ренея (табл. 2). Катализатор (35—40% от сырья) добавляли в несколько этапов, причем его отфильтровывали только после первого этапа, во время которого происходило обессеривание продукта. Гидрирование осуществляли Б течение 30—140 ч до прекращения расхода водорода и исчезновения в гидрогенизате характерных для ароматических углеводородов полос поглощения в интервале 1600 см- ИКС. В образцах определяли основные физико-химические показатели, структурно-групповой Ю] и элементарный состав (табл. 3). Устойчивость к окислению (табл. 4) определяли видоизмененным методом ВТИ и методом проф. Весели . Гидрирование продуктов сопровождалось всеми характерными для гидроочистки изменениями качества сырья. Гидрогенизаты были полностью обессерены и почти бесцветны. В условиях опытов не достигалось исчерпывающего гидрирования ароматических углеводородов. Все гидрогенизаты флуоресцировали в ультрафиолетовом свете. В зависимости от состава сырья содержание атомов углерода в ароматических кольцах уменьщалось от О до 50% от исходной величины (по методу п-й-М). Это, по-видимому, отвечает равновесным концентрациям. Более глубокого гидрирования не осуществляли, так как достигнутые результаты позволили определить свойства соединений после гидрирования и качество полученных масел. [c.251]


Смотреть страницы где упоминается термин Продукты глубокого окисления циклогексана: [c.357]    [c.40]    [c.276]   
Смотреть главы в:

Окисление циклогексана -> Продукты глубокого окисления циклогексана




ПОИСК





Смотрите так же термины и статьи:

Продукты окисления

Циклогексан



© 2025 chem21.info Реклама на сайте